Sauter à un chapitre clé
Comprendre l'algorithme du tri à bulles
Le tri à bulles est un algorithme de tri simple et direct, très populaire en informatique. Il est parfait pour les listes de petite ou moyenne taille et pour les personnes qui commencent à s'initier aux algorithmes.Définition du tri à bulles
Le tri à bulles est un algorithme simple basé sur la comparaison qui réorganise les éléments d'une liste en parcourant successivement la liste et en échangeant les éléments adjacents s'ils sont dans le mauvais ordre. Ce processus est répété jusqu'à ce que la liste soit triée.
Par exemple, si tu as une liste comme celle-ci : 5, 3, 8, 4, 2, l'algorithme du tri à bulles commencerait par comparer les deux premiers nombres. Puisque 5 est plus grand que 3, il intervertit les deux nombres. La liste deviendrait : 3, 5, 8, 4, 2. L'algorithme continuerait à comparer les paires adjacentes et à les intervertir si nécessaire, jusqu'à ce que toute la liste soit en ordre.
Principes de l'algorithme du tri à bulles
Les principes de l'algorithme du tri à bulles peuvent être résumés dans les étapes suivantes :- Compare le premier et le deuxième élément de la liste.
- Si le premier élément est plus grand que le second, échange-les.
- Passe à la paire d'éléments suivante et répète le processus.
- Continue ainsi jusqu'à ce que tu aies parcouru toute la liste sans avoir à procéder à des échanges. À ce stade, la liste est triée.
Imagine une liste de quatre éléments : 9, 7, 4, 5. Voici comment le tri à bulles fonctionne dans ce cas :
Lors de la première passe, 9 et 7 sont comparés. Comme 9 est plus grand que 7, ils sont échangés, ce qui donne la liste suivante : 7, 9, 4, 5. Ensuite, 9 et 4 sont comparés et permutés, ce qui donne la liste suivante : 7, 4, 9, 5. Enfin, 9 et 5 sont comparés et permutés, ce qui donne la liste suivante : 7, 4, 5, 9.
Le processus est ensuite répété pour les éléments restants.
Efficacité du tri à bulles
Le tri à bulles n'est pas l'algorithme de tri le plus efficace pour les grands ensembles de données. Sa complexité temporelle est de \(O(n^{2})\) dans le pire des cas, ce qui signifie qu'il peut être lent pour les grands ensembles de données.Cependant, le tri à bulles a une complexité temporelle de \(O(n)\) dans le meilleur des cas, qui est atteinte lorsque la liste d'entrée est déjà triée. Cela en fait une excellente option pour les listes qui sont déjà "presque triées".
Mécanisme de fonctionnement du tri à bulles
Dans le tri à bulles, tu peux imaginer l'ensemble des données comme une structure verticale. Les éléments les plus grands sont "plus lourds" et "descendent" vers le bas, ou la fin de la liste, tandis que les éléments plus petits "remontent" vers le haut, ou le début de la liste.Voici un exemple étape par étape de l'algorithme du tri à bulles sur une liste de cinq nombres : 5, 1, 4, 2, 8 :
Première passe : ( 5 1 4 2 8 ) → ( 1 5 4 2 8 ) ( 1 5 4 2 8 ) → ( 1 4 5 2 8 ) ( 1 4 5 2 8 ) → ( 1 4 2 5 8 ) → ( 1 4 2 5 8 ) → ( 1 4 2 5 8 ) Deuxième passe : ( 1 4 2 5 8 ) → ( 1 4 2 5 8 ) ( 1 4 2 5 8 ) → ( 1 2 4 5 8 ) → ( 1 2 4 5 8 ) → ( 1 2 4 5 8 ) → ( 1 2 4 5 8 ) Troisième passe : ( 1 2 4 5 8 ) → ( 1 2 4 5 8 ).
Maintenant, le tableau est complètement trié, et l'algorithme de tri à bulles peut arrêter son opération.
Approfondir l'exemple du tri à bulles
Dans le monde de l'informatique, le processus de compréhension des algorithmes est souvent facilité par des exemples pratiques. En examinant de plus près l'algorithme du tri à bulles en action, on comprend mieux les principes qui régissent son fonctionnement. En étudiant un exemple de tri à bulles étape par étape, tu pourras te faire une idée précise de la façon dont cet algorithme interagit avec les données.Explication du tri à bulles étape par étape
Considère une liste non triée de cinq éléments : [5, 3, 4, 1, 2].
L'objectif de l'algorithme du tri à bulles est de classer ces nombres dans l'ordre croissant. Examinons de près la façon dont il accomplit cet objectif.
Voyons ce qu'il en est :
Première passe : (5, 3, 4, 1, 2) → (3, 5, 4, 1, 2) (3, 5, 4, 1, 2) → (3, 4, 5, 1, 2) → (3, 4, 5, 1, 2) → (3, 4, 1, 5, 2) (3, 4, 1, 5, 2) (3, 4, 1, 5, 2) → (3, 4, 1, 5, 2) → (3, 4, 1, 2, 5) Deuxième passe : (3, 4, 1, 2, 5) → (3, 4, 1, 2, 5) (3, 4, 1, 2, 5) → (3, 1, 4, 2, 5) (3, 1, 4, 2, 5) → (3, 1, 2, 4, 5) Les passes continues rendent la liste complètement triée : (1, 2, 3, 4, 5).
Scénarios réels d'application du tri à bulles
Bien que le tri à bulles ne soit généralement pas efficace pour les grands ensembles de données en raison de sa complexité temporelle moyenne et dans le pire des cas (O(n^2)\), il trouve une application pratique dans certaines situations. L'un de ces scénarios est celui où l'entrée est déjà presque triée ou la liste est petite. Dans ces cas, le tri à bulles fonctionne relativement bien parce que moins de passes sont nécessaires pour trier la liste. Une petite liste ne nécessite pas beaucoup d'itérations avant d'être triée, et dans une liste presque triée, la complexité temporelle du tri à bulles de \(O(n)\), dans le meilleur des cas, entre en jeu.Prends l'exemple d'un classement en ligne des meilleurs scores de jeux vidéo. Si de nouveaux scores sont fréquemment ajoutés et qu'ils sont généralement inférieurs aux meilleurs scores, la liste est déjà presque triée. Le tri à bulles permet d'intégrer efficacement les nouveaux scores à la liste.
Étude détaillée de la complexité temporelle du tri à bulles
Comprendre les subtilités de la complexité temporelle est une partie essentielle de la maîtrise de l'algorithme du tri à bulles. Des principes de base aux moyens d'améliorer l'efficacité, plongeons dans les méandres de la complexité temporelle du tri à bulles.Complexité temporelle du tri à bulles
La complexité temporelle d'un algorithme quantifie le temps nécessaire à l'exécution d'un algorithme, en fonction de la taille de l'entrée du programme.Dans le tri à bulles, la complexité temporelle peut être définie comme le nombre de comparaisons (ou d'échanges) que l'algorithme doit effectuer pour trier la liste. Cela dépend beaucoup de l'état initial de la liste.
La représentation de la complexité temporelle dans le pire des cas permet de mieux comprendre :
Comparaisons dans la première passe : n-1 Comparaisons dans la deuxième passe : n-2 Comparaisons dans la troisième passe : n-3 ... Comparaisons dans la dernière passe : 1
Ainsi, le nombre total de comparaisons = \((n-1) + (n-2) + (n-3) + ... + 1) = \N(n*(n-1)/2), ce qui équivaut à \N(O(n^{2})\N).
Facteurs affectant la complexité temporelle du tri à bulles
La complexité temporelle du tri à bulles est fortement influencée par la disposition initiale des données dans la liste d'entrée. Le niveau d'ordre ou de désordre de la liste détermine le nombre de comparaisons et de permutations que l'algorithme doit effectuer.- Si la liste d'entrée est déjà triée, la capacité du tri à bulles à le reconnaître et à optimiser ses performances entre en jeu, ce qui conduit à une complexité temporelle de \(O(n)\).
- Pour une liste triée dans l'ordre inverse, le tri à bulles présente les pires performances, nécessitant autant d'itérations qu'il y a d'éléments au carré - ce qui conduit à une complexité temporelle de \(O(n^{2})\).
- Si les données ne sont pas classées dans un ordre particulier (au hasard), le tri à bulles présente également une complexité temporelle moyenne de \(O(n^{2})\).
Comment réduire la complexité du temps du tri à bulles
La structure du tri à bulles limite son efficacité. Cependant, il existe une variante du tri à bulles qui apporte une légère amélioration : Le tri à bulles optimisé. Le tri à bulles optimisé introduit un indicateur variable pour vérifier si une opération de permutation a eu lieu lors de la dernière passe. Si aucune permutation n'a eu lieu, cela signifie que la liste est déjà triée et qu'il n'est pas nécessaire d'effectuer d'autres passages. Cette optimisation réduit la complexité temporelle de \(O(n^{2})\Nà \N(O(n)\Npour une liste qui est déjà (ou presque) triée.Voici un extrait de code Python pour la version optimisée du tri à bulles :
def bubbleSortOptimised(arr) : n = len(arr) for i in range(n) : swapped = False for j in range(0, n-i-1) : if arr[j] > arr[j+1] : arr[j], arr[j+1] = arr[j+1], arr[j] swapped = True if swapped == False : break
Ce code comporte uniquement une variable booléenne "swapped". Elle devient vraie si des éléments ont été échangés dans la boucle interne. Après chaque passage, si aucun élément n'a été échangé (ce qui signifie que "swapped" reste False), l'algorithme sort de la boucle car il indique que la liste est déjà triée.
Avantages et inconvénients du tri à bulles
L'algorithme du tri à bulles, comme tous les autres, a sa part d'avantages et d'inconvénients. Comprendre ces avantages et ces inconvénients te permet de faire un choix éclairé sur l'algorithme de tri à utiliser dans différentes situations de programmation.Avantages du tri à bulles
Le tri à bulles présente plusieurs avantages majeurs qui en font un choix valable dans des scénarios spécifiques de manipulation de données :- Simplicité : Le tri à bulles est sans doute l'un des algorithmes de tri les plus simples à comprendre et à coder. Son concept est facile à saisir et l'algorithme peut être mis en œuvre avec seulement quelques lignes de code, ce qui le rend idéal pour les débutants en informatique et en programmation.
- Peu encombrant : Le tri à bulles est un algorithme de tri sur place. Il ne nécessite qu'un seul espace mémoire supplémentaire, d'où sa complexité spatiale de \(O(1)\), ce qui lui confère une grande efficacité au niveau de la mémoire.
- Détecte si l'entrée est déjà triée : Grâce à une légère optimisation, le tri à bulles peut cesser de s'exécuter si la liste est déjà triée. Cela signifie que sa complexité temporelle dans le meilleur des cas est de \(O(n)\), où \(n\) est le nombre d'éléments de la liste, ce qui le rend efficace pour les listes presque triées ou complètement triées.
- Algorithme stable : Le tri à bulles est un algorithme de tri stable. Cela signifie qu'il maintient l'ordre relatif des éléments de tri égaux dans la sortie triée, ce qui est une propriété souhaitable dans de nombreuses applications.
Supposons que nous ayons une liste de paires où la paire (a, b) a 'a' comme propriété principale pour la comparaison et 'b' comme propriété secondaire. Si deux paires ont le même "a", le tri à bulles garantit que la paire ayant le plus petit "b" apparaît en premier.
Limites du tri à bulles
Malgré les avantages mentionnés ci-dessus, le tri à bulles présente plusieurs limites notables qui le rendent inadapté à des situations particulières :- Efficacité médiocre sur les grands ensembles de données : La complexité temporelle moyenne et la complexité temporelle la plus défavorable du tri à bulles sont toutes deux \(O (n^{2})\), où \(n\) est le nombre d'éléments à trier. Cela le rend inefficace pour les grands ensembles de données - le processus de tri peut devenir de plus en plus lent à mesure que la taille de la liste augmente.
- Performance : Le tri à bulles nécessite souvent plus d'itérations que nécessaire pour trier complètement une liste. D'autres algorithmes plus efficaces, tels que Quicksort, Mergesort ou Heapsort, sont préférables pour les grands ensembles de données.
- Manque d'utilisation pratique : En raison de son inefficacité, le tri à bulles n'est pas souvent utilisé dans les applications réelles, où d'autres algorithmes sont plus performants.
Quand utiliser et éviter le tri à bulles
Identifier quand utiliser et quand éviter le tri à bulles peut avoir un impact significatif sur les performances de ton système. Le tri à bulles est un excellent choix pour les listes qui sont presque triées ou qui contiennent un petit nombre d'éléments. Son efficacité sur les listes presque triées (lorsqu'elles sont optimisées) et la simplicité de son concept et de sa mise en œuvre en font un superbe outil pédagogique pour introduire les algorithmes de tri en informatique. Il n'est pas compliqué, facile à comprendre et démontre de nombreuses idées employées dans des routines de tri plus complexes. Cependant, tu devrais généralement éviter d'utiliser le tri à bulles sur des listes non ordonnées de grande taille. En raison de sa complexité temporelle moyenne de \(O(n^{2})\), cet algorithme est susceptible de donner de mauvais résultats dans ces circonstances. Les algorithmes de tri tels que Mergesort, Quicksort ou Heapsort sont beaucoup plus appropriés en raison de leurs caractéristiques d'efficacité. Par exemple, lorsqu'on travaille avec des ensembles de données plus importants, Heapsort et Mergesort garantissent une complexité temporelle de \(O(n \log n)\) dans tous les cas, tandis que Quicksort a une complexité temporelle moyenne de \(O(n \log n)\), ce qui surpasse le tri à bulles. Ainsi, bien que le tri à bulles ait sa place dans le monde des algorithmes, il est essentiel de prendre en compte la nature de tes données avant de le choisir comme solution de tri.Tri à bulles - Principaux enseignements
Tri à bulles : C'est un algorithme simple basé sur la comparaison qui réorganise les éléments d'une liste en parcourant successivement la liste et en échangeant les éléments adjacents s'ils sont dans le mauvais ordre. Ce processus est répété jusqu'à ce que la liste soit triée.
Mécanisme de tri à bulles : Les éléments les plus grands "coulent" vers le bas (fin de la liste), tandis que les éléments plus petits "remontent" vers le haut (début de la liste), ce qui donne l'impression que le plus grand nombre "fait des bulles" jusqu'à sa position correcte dans la liste.
Exemple de tri à bulles : Pour une liste 5, 3, 8, 4, 2, la comparaison commence par comparer les deux premiers nombres de la liste. Si le premier nombre est plus grand que le second, ils sont échangés, et ce processus est répété jusqu'à ce qu'aucun échange ne soit plus nécessaire.
Principes de l'algorithme de tri à bulles : La première étape de cet algorithme consiste à comparer le premier et le deuxième élément de la liste. Si le premier élément est plus grand que le second, ils sont échangés. L'algorithme passe à la paire d'éléments suivante et poursuit ce processus jusqu'à ce que toute la liste ait été triée.
Complexité temporelle du tri à bulles : Dans le pire des cas, la complexité temporelle du tri à bulles est de \(O(n^{2})\). Cependant, dans le meilleur des cas, la complexité temporelle est de \(O(n)\), ce qui est obtenu lorsque la liste d'entrée est déjà triée.
Apprends plus vite avec les 16 fiches sur Tri à bulles
Inscris-toi gratuitement pour accéder à toutes nos fiches.
Questions fréquemment posées en Tri à bulles
À propos de StudySmarter
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.
En savoir plus