L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Une matrice est un tableau rectangulaire de nombres, de symboles ou d'expressions disposés en lignes et en colonnes. Le nombre de lignes et de colonnes d'une matrice est appelé sa dimension ou son ordre. Par exemple, une matrice comportant deux rangées et trois colonnes est appelée matrice 2 x 3. Les matrices sont couramment utilisées dans les calculs mathématiques et…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenUne matrice est un tableau rectangulaire de nombres, de symboles ou d'expressions disposés en lignes et en colonnes. Le nombre de lignes et de colonnes d'une matrice est appelé sa dimension ou son ordre. Par exemple, une matrice comportant deux rangées et trois colonnes est appelée matrice 2 x 3. Les matrices sont couramment utilisées dans les calculs mathématiques et scientifiques.
Les matrices sont souvent écrites entre parenthèses, avec les nombres disposés en lignes et en colonnes. Par exemple, la matrice ci-dessous représente une liste de chiffres :
Les matrices peuvent être utilisées pour représenter des données de nombreuses façons différentes. Par exemple, elles peuvent être utilisées pour représenter la position de particules dans un espace tridimensionnel. Dans ce cas, chaque ligne de la matrice représente la coordonnée x, la coordonnée y, et la coordonnée z d'une particule.
Il existe de nombreux types de matrices, notamment les matrices carrées, les matrices non carrées, les matrices lignes, les matrices colonnes, etc. Chaque type de matrice possède des propriétés et des applications qui lui sont propres.
La matrice ci-dessous est une matrice 3 x 3.
On dira que dans cette matrice, il y a trois lignes et trois colonnes. La première ligne contient les éléments 1, 2et 3. La deuxième ligne contient les éléments 4, 5 et 6. La troisième ligne contient les éléments 7, 8 et 9.
Pour lire une matrice, nous devons d'abord identifier la ligne qui nous intéresse. Par exemple, si nous voulons trouver l'élément dans la première ligne et la première colonne, nous dirons que l'élément est 1. Si nous voulons trouver l'élément dans la deuxième ligne et la troisième colonne nous dirons que l'élément est 6.
Fig. 1 - Description d'une matrice de taille m x n
On parle d'une matrice de taille m x n pour désigner les lignes et les colonnes.
La notation matricielle est un moyen pratique de représenter et de travailler avec des matrices. En notation matricielle, une matrice s'écrit avec une majuscule, comme A, B ou C. Les dimensions de la matrice s'écrivent en indice, comme Ai,j où i représente la ligne et j la colonne.
Dans la notation matricielle, les opérations matricielles sont écrites en utilisant la notation matricielle. Par exemple, l'addition matricielle s'écrit A + B, la multiplication s'écrit AB, la division s'écrit A / B (= A x B-1) et la soustraction s'écrit A - B.
Il est important de noter que nous pouvons utiliser des parenthèses ou des crochets pour entourer une matrice. Les deux notations sont correctes.
Une matrice en ligne est une matrice dans laquelle les éléments sont disposés sur une seule ligne. Par exemple, la matrice
est une matrice en ligne.
Une matrice en colonnes est une matrice qui ne comporte qu'une seule colonne. Par exemple, la matrice
est une matrice en colonnes.
Une matrice carrée d'ordre n est une matrice à n lignes et n colonnes. Par exemple, la matrice
est une matrice carrée d'ordre 3.
Une matrice diagonale est une matrice carrée dont tous les éléments extérieurs à la diagonale principale sont nuls. Par exemple, la matrice
est une matrice diagonale.
Une matrice nulle d'ordre n est une matrice carrée dont tous les éléments sont nuls. Par exemple la matrice
est une matrice nulle d'ordre 3.
Une matrice nulle est une matrice dont tous les éléments sont égaux à 0. Elle possède plusieurs propriétés :
Une matrice symétrique est une matrice carrée dans laquelle l'élément de la i-ème ligne et de la j-ème colonne est égal à l'élément de la j-ème ligne et de la i-ème colonne, pour tous les i et j. Par exemple, la matrice
est une matrice symétrique.
Il faut voir la diagonale comme l'axe de symétrie.
La transposée d'une matrice est la matrice obtenue en échangeant les lignes et les colonnes de la matrice d'origine. Par exemple, la transposée de la matrice
est la matrice
La transposée de la matrice A est notée tA
Les opérations matricielles comprennent l'addition, la soustraction, la multiplication et la division. L'addition matricielle consiste à additionner deux matrices. La soustraction matricielle consiste à soustraire une matrice d'une autre. La multiplication matricielle consiste à multiplier deux matrices. La division matricielle consiste à multiplier une matrice par l'inverse d'une autre.
A =
B =
A + B =
C =
D =
C - D =
Les matrices peuvent être utilisées pour représenter et résoudre des systèmes d'équations linéaires. Dans cette application, les opérations matricielles sont utilisées pour trouver la solution d'un système d'équations. L'équation matricielle est écrite sous forme de matrice, ce qui est une façon particulière d'écrire l'équation en utilisant des matrices.
Il existe également les opérations matricielles spéciales, telles que le déterminant et l'inverse. Le déterminant est une valeur qui peut être calculée pour toute matrice carrée. L'inverse d'une matrice est une matrice qui, lorsqu'elle est multipliée par la matrice d'origine, donne la matrice identité. La matrice identité est une matrice spéciale avec des 1 sur la diagonale principale et des 0 partout ailleurs.
Le déterminant d'une matrice est un nombre qui est associé à chaque matrice carrée. Le déterminant d'une matrice A est désigné par det(A), ou |A|. Le déterminant d'une matrice 2x2 est donné par :
det(A) = a1,1 x a2,2 - a1,2 x a2,1
a1,2 représente la valeur de la matrice dans la ligne 1 et la colonne 2.
L'inverse d'une matrice est une matrice qui, lorsqu'elle est multipliée par la matrice originale, donne la matrice identité. L'inverse d'une matrice A est noté A-1.
Soit A = alors A-1 = si et seulement si det(A) 0
Si le déterminant d'une matrice n'est pas égal à zéro, alors la matrice a un inverse et l'inverse est donné par : A-1 = où com(A) est la comatrice de A.
Les matrices sont un outil puissant qui peut être utilisé de diverses manières. Elles constituent un moyen pratique de représenter et de travailler avec des ensembles de données et des équations. Avec la notation matricielle, les opérations matricielles peuvent être réalisées facilement et avec précision. La matrice permet d'effectuer facilement des calculs mathématiques et scientifiques.
Les calculs matriciels peuvent être effectués à l'aide d'un certain nombre de méthodes, notamment la multiplication de matrices, l'addition de matrices et l'inversion de matrices.
La dimension d'une matrice est le nombre de rangées et de colonnes de la matrice. Pour calculer la dimension d'une matrice, vous devez multiplier le nombre de lignes par le nombre de colonnes.
Une matrice peut être inversée à l'aide d'un certain nombre de méthodes, dont la multiplication matricielle et l'inversion de matrice.
Vous ne pouvez multiplier deux matrices que si le nombre de lignes de la première matrice est égal au nombre de colonnes de la seconde. Si ce n'est pas le cas, la multiplication n'est pas possible.
des utilisateurs ne réussissent pas le test de Matrices ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free mathematiques cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter