Se connecter Inscris-toi gratuitement !
L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Analyse mathématiques

Want to get better grades?

Nope, I’m not ready yet

Get free, full access to:

  • Flashcards
  • Notes
  • Explanations
  • Study Planner
  • Textbook solutions

L'analyse mathématique est un domaine des mathématiques qui traite des propriétés des fonctions et de leurs limites. Elle est utilisée pour étudier le comportement de ces fonctions près de certains points, à l'infini ou les points d'inflexion. L'analyse est également utilisée pour dériver des expressions qui décrivent comment ces fonctions évoluent dans le temps.

Introduction à l'analyse

L'analyse mathématique est l'étude des fonctions et de leurs propriétés. C'est une branche des mathématiques qui traite des changements continus, contrairement à l'algèbre qui traite des changements discrets. L'analyse comprend l'étude des limites, du calcul différentiel, du calcul intégral et d'autres sujets. L'analyse est utilisée dans de nombreux domaines, notamment la physique, l'ingénierie et l'économie.

L'un des concepts les plus importants de l'analyse mathématique est la limite. La limite d'une fonction en un point est la valeur dont la fonction s'approche au fur et à mesure qu'elle se rapproche de ce point. Par exemple, considérons la fonction f(x) =. Au fur et à mesure que x se rapproche de 0, la valeur de f(x) devient de plus en plus grande. Alors, la limite de f(x) lorsque x s'approche de 0 est l'infini.

Les limites sont utilisées pour définir d'autres concepts importants en analyse, tels que la continuité et la différentiabilité. En résumé, une fonction est continue en un point si sa limite existe en ce point et est différentiable en un point si sa dérivée existe en ce point. La dérivée d'une fonction est une mesure de la façon dont la fonction change lorsque son entrée change.

Limites de fonctions

Lorsque nous parlons de la limite d'une fonction, nous faisons référence à la valeur que la fonction approche lorsque l'entrée se rapproche de plus en plus d'une certaine valeur. En d'autres termes, la limite est la valeur vers laquelle la fonction « tend » au fur et à mesure qu'elle se rapproche d'une certaine valeur.

Analyse mathématiques Limite d'une fonction sur une courbe StudySmarterFig. 1 - Limite de la fonction f(x) repésentée graphiquement

Une façon de penser à la limite d'une fonction est d'imaginer la représentation graphique de la fonction sur un repère. Au fur et à mesure que les valeurs d'entrée se rapprochent progressivement de la valeur qui nous intéresse, les points du graphique se rapprochent de plus en plus d'un certain point (la limite).

Il y a quelques éléments à garder à l'esprit lorsqu'on essaie de déterminer la limite d'une fonction :

  • La limite d'une fonction n'existe pas nécessairement. Il existe des fonctions pour lesquelles la limite n'existe pas où elles ne tendent pas vers un point ou l'infini. Cela dépend aussi de comment nous abordons la fonction (de droite à gauche ou de gauche à droite).

  • La limite d'une fonction peut être différente de la valeur réelle de la fonction au point en question. En d'autres termes, ce n'est pas parce qu'une fonction a une limite que cette limite est égale à la valeur de la fonction à ce moment-là.

  • La limite d'une fonction peut être l'infini ou l'infini négatif. Cela signifie simplement que la fonction devient arbitrairement grande au fur et à mesure que l'on s'éloigne dans le repère.

  • La limite d'une fonction peut être zéro ou un nombre fini.

Il existe plusieurs façons de noter la limite d'une fonction. La manière la plus courante est d'utiliser la notation suivante :

lim x --> a f(x) = L

Cette notation se lit comme suit : « la limite de f de x lorsque x s'approche de a est égale à L ». Il est important de noter que la limite d'une fonction n'existe que si la valeur de la fonction s'approche d'une certaine valeur pendant que l'entrée s'approche d'une certaine valeur.

Suites et limites

Une suite est une collection d'éléments qui sont disposés dans un ordre particulier. Les suites peuvent être finies ou infinies. Les suites finies ont une fin définie, tandis que les suites infinies se poursuivent indéfiniment.

Il existe de nombreux types de suites différentes qui peuvent être étudiées en mathématiques. Les suites arithmétiques sont peut-être le type de suite le plus simple. Une suite arithmétique est une séquence de nombres dans laquelle chaque nombre diffère du nombre précédent d'une même quantité.

La suite \(1, 2, 3, 4, 5, 6\) est arithmétique car chaque nombre est supérieur de 1 au nombre précédent. (\(1 + 2 = 3, 3 + 1 = 4, 4 + 1 = 5\)).

Les suites géométriques sont un autre type de suite que l'on peut étudier en mathématiques. Une suite géométrique est une séquence de nombres dans laquelle chaque nombre est un certain multiple du nombre précédent.

La suite \(12, 6, 3, 1.5\) est géométrique car chaque nombre est la moitié du nombre précédent.

Il existe de nombreux autres types de suites qui peuvent être étudiées. Cependant, toutes les suites ont un point commun : ce sont des collections d'éléments qui sont disposés dans un ordre particulier.

Les suites constituent un concept fondamental en mathématiques et peuvent être utilisées pour modéliser de nombreux phénomènes du monde réel.

Continuité

La continuité est un concept mathématique qui décrit le comportement d'une fonction lorsque ses entrées se rapprochent de plus en plus d'une certaine valeur. Plus précisément, la continuité signifie qu'une fonction se comporte de la même manière dans la « limite » qu'à la valeur actuelle.

La continuité est un concept clé en analyse, et elle est utilisée pour définir des objets mathématiques importants tels que la dérivée et l'intégrale. Une fonction est continue en un point si, dans un voisinage suffisamment petit autour de ce point, les valeurs de la fonction seront toujours proches de la valeur de la fonction au point.

Calcul différentiel

Le calcul différentiel est un sous-domaine des mathématiques qui traite de l'étude des taux de changement. En d'autres termes, il étudie la façon dont quelque chose change par rapport à quelque chose d'autre. Par exemple, si on veut savoir comment la vitesse d'une voiture évolue en fonction du temps, ou comment le chiffre d'affaires d'une entreprise est calculé. Le calcul différentiel est un outil puissant qui nous permet de comprendre et de quantifier ces types de changements.

La dérivée

L'un des concepts clés du calcul différentiel est la dérivée. La dérivée d'une fonction nous indique comment cette fonction change en un point particulier.

Si nous avons une fonction qui représente la position d'une voiture dans le temps, sa dérivée nous indiquerait la vitesse de la voiture à un moment donné. Graphiquement, elle est représentée comme la tangente de la courbe représentative de la fonction en ce point.

Analyse mathématiques Tangente d'une courbe StudySmarterFig. 2 - Tangente d'une courbe en un point

Le calcul différentiel est un sujet relativement difficile, mais il est très gratifiant une fois que l'on a appris à le maîtriser. Avec un peu de pratique, tu seras en mesure de résoudre des problèmes complexes qui seraient autrement impossibles.

Calcul intégral

L'intégration permet de trouver l'aire sous une courbe, ainsi que le volume d'un solide de révolution. L'intégration est un outil fondamental de mathématiques et est utilisée pour résoudre de nombreux problèmes de physique et d'ingénierie.

Analyse mathématiques Aire sous une courbe StudySmarterFig. 3 - Aire S sous une courbe représentative de la fonction f(x)

L'intégration peut être effectuée en divisant la région en petits morceaux, puis en additionnant les surfaces de ces morceaux. Ce processus est appelé intégration numérique et peut être utilisé pour calculer approximativement l'aire sous une courbe. L'intégration peut également être réalisée de manière analytique, en utilisant des formules mathématiques. L'intégration analytique est souvent plus facile que l'intégration numérique, et elle peut donner des résultats plus précis.

L'intégration peut être utilisée pour déterminer le mouvement des objets, la résistance des matériaux et l'écoulement des fluides. C'est également un ingrédient clé dans la résolution des équations différentielles, qui sont utilisées pour modéliser de nombreux systèmes physiques.

Pour conclure, l'analyse est un domaine des mathématiques qui a une longue histoire. Certains des mathématiciens les plus célèbres, tels qu'Augustin-Louis Cauchy et Pierre-Simon Laplace, ont apporté des contributions majeures au domaine de l'analyse. C'est encore un domaine de recherche actif aujourd'hui, et de nombreux nouveaux résultats sont découverts en permanence.

Analyse mathématiques - Points à retenir

  • L'analyse est un outil puissant qui peut être utilisé pour résoudre de nombreux problèmes en mathématiques et en physique.
  • L'analyse comprend l'étude des limites, du calcul différentiel et du calcul intégral.
  • La limite est la valeur vers laquelle la fonction « tend » au fur et à mesure qu'elle se rapproche d'une certaine valeur.
  • Une suite est une collection d'éléments qui sont disposés dans un ordre particulier. Les suites peuvent être finies ou infinies.
  • Le calcul différentiel étudie la façon dont une valeur ou quantité change par rapport à quelque chose d'autre.
  • L'intégration est le processus qui permet de trouver l'aire sous une courbe, ainsi que le volume d'un solide de révolution.

Références

  1. Fig. 1 : Limite de la fonction f(x), Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Limit-at-infinity-graph.png) par Sverdrup (https://en.wikipedia.org/wiki/User:Sverdrup) sous license GNU Free Documentation License
  2. Fig. 2 : Tangente d'une courbe en un point, Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Tangent_to_a_curve.svg) par Jacj (https://en.wikipedia.org/wiki/User:Jacj) dans le domaine public
  3. Fig 3. : Aire S sous une courbe représentative de la fonction f(x), Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Integral_as_region_under_curve.svg) par 4C sous license GNU Free Documentation License

Questions fréquemment posées en Analyse mathématiques

L'algèbre s'intéresse à l'étude des symboles mathématiques et aux règles de manipulation de ces symboles. En revanche, l'analyse se concentre sur les propriétés des fonctions et des suites. Une autre différence essentielle est que l'algèbre traite généralement des équations ayant un nombre fini de solutions, alors que l'analyse implique souvent des équations ayant un nombre infini de solutions. Par conséquent, l'algèbre est généralement utilisée pour résoudre des problèmes spécifiques, tandis que l'analyse est plus souvent utilisée pour développer des théories générales.

Le calcul différentiel et le calcul intégral sont deux des branches les plus importantes de l'analyse mathématique. La continuité et les limites sont également des concepts importants dans ce domaine. L'analyse mathématique est utilisée pour étudier les fonctions et leurs propriétés. Elle est également utilisée pour étudier le comportement de ces fonctions en différents points.  

Questionnaire final de Analyse mathématiques

Question

Quelle est la différence entre l'intégration et la dérivation ?

Montrer la réponse

Réponse

La dérivation est le processus qui consiste à trouver le taux de variation d'une fonction en un point alors que l'intégration trouve l'aire sous la courbe.

Montrer la question

Question

Quel est le concept clé de la continuité ?


Montrer la réponse

Réponse

Une fonction est continue en un point si, dans un voisinage assez petit autour de ce point, les valeurs de la fonction seront toujours proches de la valeur de la fonction au point.

Montrer la question

Question

Comment est défini le calcul différentiel ?


Montrer la réponse

Réponse

Le calcul différentiel est un sous-domaine des mathématiques qui traite de l'étude des taux de changement. En d'autres termes, il étudie comment une chose change par rapport à une autre.

Montrer la question

Question

Que nous dit la dérivée ?

Montrer la réponse

Réponse

La dérivée de une fonction nous indique comment la fonction change en un point particulier. Elle est représentée par la tangente de la courbe représentant la fonction à ce point.

Montrer la question

Question

Comment trouver la tangente d'une courbe ?


Montrer la réponse

Réponse

La tangente d'une courbe peut être trouvée en prenant la dérivée de la courbe en un point particulier.

Montrer la question

Question

Qu'est-ce que l'intégration ?


Montrer la réponse

Réponse

L'intégration est le processus qui consiste à trouver l'aire sous une courbe où le volume d'un solide de révolution.

Montrer la question

Question

Pourquoi l'intégration analytique est-elle souvent plus facile que l'intégration numérique ?

Montrer la réponse

Réponse

L'intégration analytique est souvent plus facile que l'intégration numérique, car elle peut être réalisée à l'aide de formules mathématiques. Ces formules peuvent donner des résultats plus précis que les méthodes numériques.

Montrer la question

Question

Quelle est la différence entre une suite géométrique et une suite arithmétique ?

Montrer la réponse

Réponse

Les suites arithmétiques sont les suites où la différence entre deux termes consécutifs est une constante. En revanche, pour les suites géométriques, le quotient de deux termes consécutifs est une constante.   

Montrer la question

Question

Dans le contexte d'une série, que signifie cette lettre ?

Montrer la réponse

Réponse

Cette lettre grecque est prononcé « sigma » et représente la somme de termes.

Montrer la question

Question

Les éléments d'une suite sont appelés des : 

Montrer la réponse

Réponse

membres

Montrer la question

Question

Dans le terme u5, 5 est appelé :

Montrer la réponse

Réponse

rang

Montrer la question

Question

Quelle suite est écrite dans sa forme explicite ?

Montrer la réponse

Réponse

un = 2n +5

Montrer la question

Question

Quelle suite est exprimée par une formule de récurrence ?

Montrer la réponse

Réponse

un= 3n + 5

Montrer la question

Question

Qu'est-ce que la limite d'une suite ?

Montrer la réponse

Réponse

La limite d'une suite numérique est le nombre dont elle se rapproche tandis que son indice augmente.

Montrer la question

Question

Qu'est-ce qu'une suite numérique ?

Montrer la réponse

Réponse

Une suite dont les termes sont des nombres, à l'opposition d'une suite de fonctions.

Montrer la question

Question

Quelle est la limite de la suite 5,1,  5,01,  5,001,  ... ?

Montrer la réponse

Réponse

La limite est 5, comme les termes de la suite rapprochent de plus en plus à 5.

Montrer la question

Question

Pour les suites de fonctions, il existe quels types de convergence ?

Montrer la réponse

Réponse

Convergence simple

Montrer la question

Question

Qu'est-ce que la différence entre les significations de (un) et un ?

Montrer la réponse

Réponse

(un) fait référence à la suite, alors que un fait référence au terme. 

Montrer la question

Question

Comment peut noter la somme des termes de la suite (un) ?

Montrer la réponse

Réponse

nun

Montrer la question

Question

La suite un est définie par u0 = 3 et un+1=un - 2. Calcule u3.

Montrer la réponse

Réponse

u1 = u0 - 2 = 3 - 2 = 1

u2 = u1 - 2 = 1 - 2 = -1

u3 = u2 - 2 = -1 - 2 = -3

Montrer la question

Question

La suite un est définie par un = 2n - 1. Calcule u5

Montrer la réponse

Réponse

u5 = 25-1 = 31

Montrer la question

Question

Est-ce que la suite 1, 5, 9, 13, ... est arithmétique ou géométrique ? 

Montrer la réponse

Réponse

Cette suite est arithmétique car la différence entre chaque terme est une constante, ici 4.

Montrer la question

Question

La suite 76, 70, 64, ... est :

Montrer la réponse

Réponse

croissante

Montrer la question

Question

La suite 7, 9, 11, ... est :

Montrer la réponse

Réponse

croissante


Montrer la question

Question

Qu'est-ce qu'une suite arithmétique ?

Montrer la réponse

Réponse

Les suites arithmétiques sont les suites où la différence entre deux termes consécutifs est une constante.

Montrer la question

Question

Qu'est-ce qu'une suite géométrique ?

Montrer la réponse

Réponse

Les suites géométriques sont les suites où le quotient de deux termes consécutifs est une constante.

Montrer la question

Question

Qu'est-ce qu'une suite monotone ?

Montrer la réponse

Réponse

Une suite monotone est une suite croissante ou décroissante.

Montrer la question

Question

La suite 0, 1, 0, 1, ... est 

Montrer la réponse

Réponse

périodique

Montrer la question

Question

La suite 3, 2, 1, 1, 1, ... est :

Montrer la réponse

Réponse

croissante

Montrer la question

Question

Qu'est-ce qu'une série numérique ?

Montrer la réponse

Réponse

Une série numérique est la somme des termes d'une suite numérique.

Montrer la question

Question

Qu'est-ce qu'une série convergente ?

Montrer la réponse

Réponse

Une série est dite convergente si la suite des ses sommes partielles converge.

Montrer la question

Question

La série harmonique converge-t-elle ?

Montrer la réponse

Réponse

Oui

Montrer la question

Question

Qu'est-ce qu'une suite absolument convergente ?

Montrer la réponse

Réponse

Une série est absolument convergente si la somme des valeurs absolues de ses termes est un nombre fini.

Montrer la question

Question

La convergence absolue d'une série implique sa convergence « classique ».

Montrer la réponse

Réponse

Oui

Montrer la question

Question

La convergence « classique » d'une série implique sa convergence absolue.

Montrer la réponse

Réponse

Oui

Montrer la question

Question

Qu'est-ce que la dérivation ? 

Montrer la réponse

Réponse

La dérivation est le processus qui consiste à trouver la dérivée d'une fonction.

Montrer la question

Question

Qu'est-ce que la dérivée d'une fonction ? 

Montrer la réponse

Réponse

La dérivée d'une fonction est le taux de variation de la fonction par rapport à l'une de ses variables.

Montrer la question

Question

Quelle est la dérivée d'une fonction constante ? 

Montrer la réponse

Réponse

La dérivée d'une fonction constante est égale à zéro.

Montrer la question

Question

Qu'est-ce que la dérivée d'une fonction linéaire ? 

Montrer la réponse

Réponse

La dérivée d'une fonction linéaire est la pente de la droite.

Montrer la question

Question

Trouve la dérivée de y = 3x^2 - 5x + 2

Montrer la réponse

Réponse

6x - 5

Montrer la question

Question

Trouve la dérivée de y = (4x^3 + 2x - 5) / (3x^2).

Montrer la réponse

Réponse

(12x^2+2) / (3x^2) - (8x^3+4x) / (9x^3)

Montrer la question

Question

Trouve la dérivée de y = ln(x).

Montrer la réponse

Réponse

1/x

Montrer la question

Question

Trouve la dérivée de y = sin(x)

Montrer la réponse

Réponse

cos(x)

Montrer la question

Question

Trouve la dérivée de y = cos(x)

Montrer la réponse

Réponse

- sin(x)

Montrer la question

Question

Trouve la dérivée de y = 4x^10

Montrer la réponse

Réponse

40x^9

Montrer la question

Question

Trouve la dérivée de y = 12x + 4x 

Montrer la réponse

Réponse

16

Montrer la question

Question

Trouve la dérivée de y = 4/(2x + 1) 

Montrer la réponse

Réponse

-8/(2x + 1)² 

Montrer la question

Question

Trouve la dérivée de y = cos(x)sin(x) 

Montrer la réponse

Réponse

cos²(x) - sin²(x) 

Montrer la question

Question

Trouve la dérivée de y = sin(x)/cos(x) 

Montrer la réponse

Réponse

1+ tan²x 

Montrer la question

Question

Trouve la dérivée de y = 1/x² 

Montrer la réponse

Réponse

- 2/x³ 

Montrer la question

AUTRES THÈMES EN Analyse mathématiques
60%

des utilisateurs ne réussissent pas le test de Analyse mathématiques ! Réussirez-vous le test ?

lancer le quiz

Complète tes cours avec des thèmes et sous-thèmes disponibles pour chaque matière!

Inscris-toi gratuitement et commence à réviser !