L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
C'est peut-être clair pour toi que nous pouvons approximer \(10{,}001\) par \(10\), mais sais-tu comment faire l'approximation du graphique d'une fonction ? Il y a plusieurs méthodes, mais la plus simple est d'utiliser la tangente. Dans ce résumé de cours, nous donnerons d'abord la définition d'une tangente en un point d'une…
Explore notre appli et découvre plus de 50 millions de contenus d'apprentissage gratuitement.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenC'est peut-être clair pour toi que nous pouvons approximer \(10{,}001\) par \(10\), mais sais-tu comment faire l'approximation du graphique d'une fonction ? Il y a plusieurs méthodes, mais la plus simple est d'utiliser la tangente. Dans ce résumé de cours, nous donnerons d'abord la définition d'une tangente en un point d'une courbe. Par la suite, nous expliciterons le lien entre la dérivée et la tangente en un point donné, avant d'expliquer la formule pour l'Équation de la tangente. Il est également possible de déterminer l'Équation d'une tangente graphiquement. Pour terminer, nous détaillerons comment tracer la tangente d'une courbe représentative en un point.
La tangente d'une courbe en un point est la droite qui touche la courbe en ce point.
Il est bien plus facile de comprendre ce qu'est une tangente en la visualisant, en voici un exemple.
Fig. 1 - Des exemples de tangentes
Dans ce graphique, nous observons la courbe représentative de la fonction \(f(x) = 2x^3 + 5x^2 -3\). Il y a également deux tangentes, une en \(x = -2\) et une autre en \(x = 0\).
Il y a un autre type de tangente : il s'agit d'une fonction trigonométrique. Il existe une relation intéressante entre la tangente que nous calculons en trigonométrie et la tangente que nous détaillons ici. Pour en savoir plus, consulte notre résumé de cours sur le cercle trigonométrique.
Le but est souvent de déterminer l'équation d'une tangente donnée. La formule qui nous aide à trouver l'équation de la tangente contient une dérivée. Dans la section suivante, nous rappelons des concepts clés sur les dérivées.
Ici, nous rappelons d'abord des concepts clés de la dérivation qui te seront nécessaires pour déterminer l'équation d'une tangente. Si tu as besoin d'un rappel plus poussé, consulte notre résumé de cours sur les formules de dérivation.
Le taux de variation d'une fonction \(f(x)\) entre \(x = a\) et \(x = a+h\) est \( \tau_h = \frac{f(a+h) -f(a)}{h}\).
Le nombre dérivé d'une fonction \(f(x)\) en \(x = a\) est la limite \(\lim_{h \to 0} \frac{f(a+h) -f(a)}{h} \)
La fonction dérivée (ou simplement dérivée) est la fonction \(f'(x)\) qui associe à chaque \(x\) dans l'ensemble de dérivabilité de \(f(x)\) son nombre dérivé.
Le taux de variation est en fait le coefficient directeur (ou pente) de la droite qui passe par les points \((a, f(a))\) et \((a+h, f(a+h))\). De plus, la dérivée quantifie la variation de la fonction en un point donné. Quel lien donc y-a-t-il entre la dérivée et la tangente ? Il faut garder à l'esprit que la dérivée est égale au coefficient directeur de la tangente en un point.
Voici un tableau avec quelques formules que nous utiliserons pour calculer la fonction dérivée.
fonction | dérivée |
\(x^n\) | \(nx^{n-1}\) |
\(e^x\) | \(e^x\) |
\(\ln(x)\) | \(\frac{1}{x}\) |
\(\cos(x)\) | \(-\sin(x)\) |
\(\sin(x)\) | \(\cos(x)\) |
\(f(x) + g(x)\) | \(f'(x) + g'(x)\) |
\(f(x)g(x)\) | \(f'(x)g(x) + f(x)g'(x)\) |
\(\frac{f(x)}{g(x)}\) | \(\frac{f'(x)g(x) - g'(x)f(x)}{(g(x))^2}\) |
Considérons la courbe représentative de la fonction \(f(x) = 2x^3 + 5x^2 -3\).
Sa fonction dérivée est \(f'(x) = 6x^2 + 10x\).
Le coefficient directeur (ou pente) de la tangente en \(x = -2\) est donc \(f'(-2) = 6(-2)^2 + 10(-2) = 4\).
Calculer le coefficient directeur d'une tangente est la première étape nécessaire pour déterminer l'équation de la tangente.
Pour déterminer l'équation de la tangente d'une courbe représentative en un point donné, il y a une formule prête à l'emploi. La formule pour l'équation réduite de la tangente de \(f(x)\) en \(x=a\) est donnée par : \[y = f'(a)(x-a) + f(a)\] Voyons maintenant comment l'utiliser avec un exemple concret.
Trouvons l'équation de la tangente à la courbe \(f(x) = 2x^3 + 5x^2 -3\) en \(x = -2\).
D'abord, nous devons déterminer la dérivée : \(f'(x) = 6x^2 + 10x\)
Calculons la valeur de la fonction en \(x = -2\) : \(f(-2) = 1\)
Calculons la valeur de sa dérivée en \(x = -2\) : \(f'(-2) = 4\)
Nous pouvons maintenant appliquer la formule pour l'équation d'une tangente : \(y = 4(x+2) + 1\)
Enfin, simplifions un peu : \(y = 4x+9\)
À part sa formule, nous pouvons également déterminer l'équation d'une tangente graphiquement.
Pour déterminer l'équation d'une tangente graphiquement, il nous faut deux points de la droite ou un point et le coefficient directeur. L'idéal serait de lire l'ordonnée à l'origine et la pente. Or, ce n'est pas toujours possible et il faut utiliser des formules en plus. Voici un exemple pour t'aider à déterminer l'équation d'une tangente graphiquement.
Fig. 2 - Comment déterminer l'équation d'une tangente graphiquement
À partir de ce graphique, l'ordonnée à l'origine est 2. Pour le coefficient directeur, nous devons lire par combien la droite augmente ou diminue quand nous avançons d'une unité à droite. Ici, si nous déplaçons par 1 unité à droite, nous augmentons par 1 verticalement.
L'équation réduite de la tangente est donc \(y = x +2\).
Voyons comment faire dans le cas « non-idéal ».
Fig. 3 - Comment déterminer l'équation d'une tangente graphiquement
Nous devons choisir deux points de la tangente pour calculer son coefficient directeur. Ici, nous choisirons \((-2,0)\) et \((-1{,}8,2{,}4)\).
\(\text{coefficient directeur} = \frac{\Delta y}{\Delta x} \)
\(\text{coefficient directeur} = \frac{2{,}4 - 0}{-1{,}8 - (-2)} = 12\)
Maintenant, nous pouvons substituer le coefficient directeur et le point où la tangente touche la courbe dans sa formule.
\(y = 12(x+2) + 0\)
\(y = 12x + 24\)
Pour tracer une tangente, il faut connaître deux points de celle-ci. Pour pouvoir la déterminer, l'énoncé doit préciser un seul point et nous devons trouver le deuxième point à l'aide de son équation. Voici un exemple qui va t'aider à mieux comprendre comment tracer une tangente.
Nous allons montrer comment tracer la tangente de la fonction \(f(x) = 3x^3 + 6x^2\) en \(x = -1\).
Fig. 4 - La courbe représentative de la fonction \(f(x) = 3x^3 + 6x^2\)
Pour déterminer le point où la courbe et la tangente touchent, nous pouvons lire que \(f(-1) = 3\). La courbe et la tangente touchent donc au point \((-1,3)\).
Nous devons ensuite déterminer l'équation de tangente. Pour cela, nous devons déterminer la fonction dérivée.
\(f(x) = 3x^3 + 6x^2\)
\(f'(x) = 9x^2 + 12x\)
Ainsi, nous pouvons déterminer l'équation de la tangente.
\(y = f'(-1)(x+1) + f(-1)\)
\(y = -3(x+1) + 3\)
\(y = -3x\)
Nous pouvons alors déterminer un autre point de tangente. Lorsque \(x =0, y =0\). Nous pouvons donc utiliser les deux points pour tracer la tangente.
Fig. 5 - Comment tracer une tangente
La méthode que nous avons explicitée ici sert à tracer une tangente à la main. Or, nous pouvons également utiliser une calculatrice graphique ou un logiciel pour tracer une tangente.
La tangente d'une courbe en un point est la droite qui touche la courbe en ce point.
Pour tracer une tangente, il faut connaître deux points qui satisfont l'équation de la tangente.
Le coefficient directeur de la tangente en un point donné est la dérivée en ce point.
Le pente de la tangente en un point donné est la dérivée en ce point.
Pour déterminer l'équation d'une tangente, il faut utiliser la formule. L'équation de la tangente à f(x) en x=a est donnée par y = f'(a)(x-a) + f(a).
La formule pour l'équation d'une tangente est y = f'(a)(x-a) + f(a).
Fiches dans Équation de la tangente13
Commence à apprendreQu'est-ce qu'une tangente ?
La tangente d'une courbe en un point est la droite qui touche la courbe en ce point.
Quel est lien entre la dérivée et la tangente ?
Il faut garder à l'esprit que la dérivée est égale au coefficient directeur de la tangente en un point.
Quelle est la formule pour l'équation d'une tangente ?
\[y = f'(a)(x-a) + f(a)\].
Comment déterminer l'équation d'une droite graphiquement ?
Il faut lire l'ordonnée à l'origine et la pente, ou à défaut, lire deux points et effectuer les calculs nécessaires.
Comment tracer une tangente ?
Il faut déterminer deux points de la tangente à l'aide de son équation et tracer la droite qui passe par les deux points.
Quel est le coefficient directeur de la tangente à la courbe de \(f(x) = x^3 - 4x^2\) en \(x=2\) ?
La fonction dérivée est \(f'(x) = 3x^2 - 8x\).
Le coefficient directeur (ou pente) de la tangente en \(x = 2\) est donc \(f'(2) = 6(2)^2 + 10(2) = 44\).
Tu as déjà un compte ? Connecte-toi
La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter