L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Nous pouvons utiliser un contre-exemple en maths quand nous voulons démontrer qu'une affirmation est fausse. Contrairement aux autres méthodes de démonstration, il suffit de trouver un exemple qui nie l'affirmation. Par exemple, si quelqu'un dit que tous les élèves aiment les maths, il suffit d'en avoir un(e) qui n'aime pas les maths. Dans ce résumé de cours, nous définirions d'abord…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenNous pouvons utiliser un contre-exemple en maths quand nous voulons démontrer qu'une affirmation est fausse. Contrairement aux autres méthodes de démonstration, il suffit de trouver un exemple qui nie l'affirmation. Par exemple, si quelqu'un dit que tous les élèves aiment les maths, il suffit d'en avoir un(e) qui n'aime pas les maths. Dans ce résumé de cours, nous définirions d'abord ce qu'est un contre-exemple et quand utiliser le raisonnement par contre-exemple. Par la suite, nous donnerons une méthode pour trouver des contre-exemples en maths et quelques exemples.
Un contre-exemple est un cas spécifique qui contredit une affirmation plus générale.
En mathématiques, les contre-exemples sont un élément clé à utiliser pour réfuter une affirmation. Comme son nom indique, il s'agit d'un exemple qui va contre l'affirmation en question. Ce n'est pas censé être une longue démonstration (a priori).
Comment faisons-nous une démonstration par contre-exemple ? Une démonstration doit employer un raisonnement qui s'applique à tout élément concerné par l'affirmation. Comme un contre-exemple n'est qu'un exemple, nous ne pouvons pas effectuer une démonstration par contre-exemple.
Pour démontrer une proposition, nous devons privilégier des méthodes telles que le raisonnement déductif, le raisonnement par récurrence ou le raisonnement par l'absurde. En revanche, le raisonnement par contre-exemple peut être utile dans certaines situations.
Quand utiliser le raisonnement par contre-exemple en maths ? Cette méthode est plus efficace si nous voulons réfuter l'affirmation ou démontrer qu'elle est fausse. Par contre, il n'est pas très utile si nous voulons montrer que quelque chose est vrai pour tous les nombres dans un certain ensemble.
Dans ce cas, c'est mieux d'utiliser une démonstration par récurrence.
Même si nous pouvons simplement tester différents cas particuliers, c'est mieux d'utiliser une méthode systématique, qui nous permettra de plus efficacement trouver un contre-exemple. Il faut d'abord bien comprendre l'énoncé. Cela nous permettra de voir ce qui ne marche pas dans la proposition. Une fois que nous comprenons ce qui ne va pas avec la proposition, il faut trouver une condition qui fait que la proposition ne fonctionne pas. Nous devons ensuite trouver un cas spécifique qui vérifie cette condition.
La partie importante c'est de tester pour s'assurer que l'énoncé donné ne marche pas.
Trouvons un contre-exemple à l'affirmation suivante : « tous les nombres premiers sont impairs ».
Il faut examiner les nombres premiers et voir s'il en existe un qui n'est pas impair.
Le nombre 2 est un contre-exemple (et le seul contre-exemple) car il est un nombre premier, mais il est pair.
Trouvons un contre-exemple à l'affirmation suivante : \((a+b)^2 = a^2 + b^2\) pour tous nombres réels \(a\) et \(b\).
Il faut déterminer deux nombres pour que l'égalité ne soit pas vraie. Comme cette égalité contient des carrés, il faut considérer les propriétés des puissances et racines.
Nous pouvons choisir -1 et 1 pour le contre-exemple. En effet, \((1+(-1))^2 = 0\), mais \((-1)^2 + 1^2 = 2\).
Notons également qu'il est possible de réfuter cette affirmation en développant le membre de gauche et vérifiant qu'il n'est pas égal au membre de droite.
« Si \(f(x)\) est une fonction définie sur l'intervalle \([a, b]\), alors les valeurs de \(f(x)\) sont comprises entre \(f(a)\) et \(f(b)\). » Cette affirmation est-elle vraie ?
En fait, l'affirmation est fausse. Dans ce cas, il serait utile de tracer les graphiques de quelques fonctions pour voir quand l'affirmation donnée est vraie ou fausse.
Fig. 1 - La fonction carré est un contre-exemple à l'affirmation donnée ci-dessus
La fonction \(f(x) = x^2\) est un contre-exemple à l'affirmation. En effet, si nous considérons l'intervalle \([a, b] = [-1,1]\), alors l'intervalle \([a, b]\) est réduit à une valeur : \([f(-1),f(1)] = [1,1] = \{1\}\). Or, nous pouvons voir du graphique que la fonction prend d'autres valeurs à part \(1\) dans l'intervalle \([-1,1]\).
Un contre-exemple en maths est un cas spécifique qui contredit une affirmation plus générale.
Le raisonnement par contre-exemple peut être très efficace si nous voulons réfuter une affirmation ou démontrer qu'elle est fausse.
Il faut utiliser le raisonnement par contre-exemple quand nous voulons réfuter une affirmation plus générale.
Il y a plusieurs méthodes pour démontrer une affirmation, par exemple le raisonnement par l'absurde ou par récurrence.
des utilisateurs ne réussissent pas le test de Contre exemple ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free mathematiques cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter