L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Savais-tu que nous pouvons démontrer une proposition mathématique en supposant qu'elle est fausse ? C'est ce que nous appelons le raisonnement par l'absurde. Dans ce résumé de cours, nous allons d'abord expliquer comment se déroule une Démonstration par l'absurde et comment utiliser une contradiction pour un raisonnement par l'absurde. Par la…
Explore notre appli et découvre plus de 50 millions de contenus d'apprentissage gratuitement.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenSavais-tu que nous pouvons démontrer une proposition mathématique en supposant qu'elle est fausse ? C'est ce que nous appelons le raisonnement par l'absurde. Dans ce résumé de cours, nous allons d'abord expliquer comment se déroule une Démonstration par l'absurde et comment utiliser une contradiction pour un raisonnement par l'absurde. Par la suite, nous donnerons des exemples détaillés. Enfin, nous traiterons un concept similaire, la contraposée d'une proposition mathématique et le raisonnement par contraposée.
Pour faire une Démonstration par l'absurde, nous devons d'abord supposer le contraire de ce que nous voulons démontrer et ensuite montrer que cette supposition aboutit à une contradiction. Cette méthode n'est pas le même qu'un contre-exemple. Ce dernier n'est qu'un exemple, alors qu'une démonstration par l'absurde nécessite un Raisonnement déductif.
Nous pouvons démontrer les propriétés suivantes à l'aide d'une démonstration par l'absurde :
Une contradiction est un élément clé du raisonnement par l'absurde. Cette contradiction doit être à l'encontre d'une hypothèse faite préalablement dans la démonstration ou d'un axiome mathématique.
Pour rappel, un axiome mathématique est une proposition considérée vraie sans démonstration, un des fondements des connaissances Mathématiques.
Il ne suffit pas de trouver une contradiction. En effet, il est nécessaire d'expliquer pourquoi la contradiction trouvée est en fait une contradiction. Il est plus facile de comprendre comment faire avec des exemples.
Voyons quelques exemples de comment se servir d'un raisonnement par l'absurde.
Peux-tu utiliser le raisonnement par l'absurde pour démontrer qu'il n'y a pas de plus grand nombre pair ?
Pour un raisonnement par l'absurde, nous devons d'abord supposer la réciproque de ce que nous souhaitons démontrer. Ainsi, nous ferons l'hypothèse qu'il y a un plus grand nombre pair \(n\).
Il faut maintenant utiliser cette hypothèse pour aboutir à une contradiction. Si \(n\) est pair, alors \(m = n + 2\) est aussi un nombre pair. Or, \(m > n\) et cela contredit hypothèse que le plus grand nombre pair est \(n\).
Ainsi, suite à un raisonnement par l'absurde, nous pouvons conclure qu'il n'y a pas de plus grand nombre pair.
Nous pouvons utiliser le raisonnement par l'absurde pour démontrer des résultats assez importants.
Peux-tu utiliser un raisonnement par l'absurde pour démontrer qu'il y a une infinité de Nombres premiers ?
La première étape d'un raisonnement par l'absurde est de supposer la réciproque de l'énoncé que nous souhaitons démontrer. Ainsi, supposons qu'il existe un nombre fini \(n\) de nombres premiers : \(p_1, p_2, ..., p_n\).
Considérons maintenant le nombre \(P = p_1 p_2 ... p_n + 1\). Comme \(p_1, p_2, ..., p_n\) sont les seuls nombres premiers par notre hypothèse, le nombre \(P\) doit être un nombre composé.
Or, \(P\) n'est divisible par aucun des premiers \(p_1, p_2, ..., p_n\). Cela veut dire que \(P\) n'est divisible que par lui-même et \(1\). \(P\) est donc un nombre premier, ce qui contredit notre hypothèse que seuls \(p_1, p_2, ..., p_n\) sont des nombres premiers.
Suite à un raisonnement par l'absurde, nous pouvons ainsi conclure qu'il existe une infinité de nombres premiers.
Pour une proposition mathématique de la forme « P implique Q », sa contraposée est « non Q implique non P ».
Considère la proposition « s'il pleut, alors le sol est mouillé ». Sa contraposée est « si le sol n'est pas mouillé, alors il ne pleut pas ».
Similairement, la contraposée de la proposition « si \(n^2 + 1\) est pair, alors \(n\) est impair » est « si \(n\) est pair, alors \(n^2 + 1\) est impair ».
Lorsqu'une proposition mathématique est vraie, sa contraposée est également vraie. Ainsi, pour démontrer certaines propositions, il pourrait être plus facile de démontrer la contraposée que la proposition elle-même. Dans ce cas, nous appliquons donc un raisonnement par contraposée.
Le raisonnement par contraposée consiste à utiliser la contraposée d'une proposition mathématique pour la démontrer. Nous pouvons appliquer un raisonnement par contraposée peu importe ce que nous souhaitons démontrer. Il faut néanmoins faire attention à bien construire la contraposée de la proposition en question.
Peux-tu démontrer que si \(x^3 - y^3 \leq 3x^2 y - 3xy^2\), alors \(y \geq x\) ?
D'abord, construisons la contraposée de la proposition à démontrer : si \(y < x\), alors \(x^3 - y^3 > 3x^2 y - 3xy^2\).
Il faut maintenant manipuler les expressions algébriques pour démontrer la contraposée.
\(y < x\)
\(x - y > 0\)
\((x - y)^3 > 0\)
\(x^3 - 3x^2 y + 3xy^2 - y^3 > 0\)
\(x^3 - y^3 > 3x^2 y - 3xy^2\)
Nous avons démontré que la contraposée est vraie, ainsi la proposition initiale est également vraie.
Le principe du raisonnement par l'absurde est de supposer le contraire de ce que nous souhaitons démontrer et montrer que cela entraîne une contradiction.
Pour faire une démonstration par l'absurde, il faut d'abord supposer le contraire de ce qu'il faut démontrer. Ensuite, il est nécessaire de trouver une façon que cette hypothèse engende une contradiction. Enfin, il faut expliquer pourquoi il s'agit d'une contradiction.
Il convient d'utiliser le raisonnement par l'absurde lorsque la proposition à démontrer contient une négation, par exemple, « pas » ou « aucun ».
Nous pouvons utiliser la contraposée pour démontrer une proposition lorsque la contraposée semble plus facile à démontrer que la proposition initiale.
Fiches dans Raisonnement par l'absurde15
Commence à apprendreQuelle est la contraposée de « si \(n\) est pair, alors il existe un entier \(k\) tel que \(n = 2k\) » ?
Si \(n\) est impair, alors il n'existe aucun entier \(k\) tel que \(n = 2k\)
Pour une proposition mathématique de la forme « P implique Q », sa ____ est « non Q implique non P ».
contraposée
Si une proposition est vraie, alors sa contraposée est vraie.
Vrai
Si la contraposée d'une proposition est vraie, la proposition peut être vraie ou fausse.
Faux
Si la contraposée d'une proposition était fausse, est-ce que la proposition pourrait être vraie ?
Non, car une proposition et sa contraposée sont équivalentes d'un point de vue logique.
Démontre qu'il n'y aucun plus grand nombre impair en utilisant un raisonnement par l'absurde.
Par l'absurde, faisons l'hypothèse qu'il y a un plus grand nombre impair \(n\).
Si \(n\) est impair, alors \(m = n + 2\) est aussi un nombre impair. Or, \(m > n\) et cela contredit hypothèse que le plus grand nombre impair est \(n\).
Nous pouvons conclure qu'il n'y a pas de plus grand nombre impair.
Tu as déjà un compte ? Connecte-toi
La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter