Conservation de l'énergie mécanique

Imagine que tu tiens un ballon sur la terrasse de ton immeuble. Tu peux voir la balle tomber lorsque tu la lâches. C'est la force gravitationnelle qui agit sur la balle qui la fait tomber. Mais où la balle a-t-elle puisé son énergie ? As-tu nourri la balle ? Y a-t-il une transformation de l'énergie ? Lis la suite pour comprendre comment fonctionne la conservation de l'énergie mécanique dans de tels scénarios.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Le principe de conservation de l'énergie stipule que l'énergie ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'énergie mécanique totale correspond à

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : L'énergie existe sous de nombreuses formes ; cependant, toute énergie peut être classée comme énergie cinétique ou potentielle.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Dans un système isolé et sans frottement, l'énergie mécanique totale augmente toujours.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un véhicule en mouvement sur la route a _____ d'énergie.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'énergie mécanique implique ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Un avion en mouvement dans l'air ne possède que de l'énergie cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Dans un système isolé, s'il y a une perte de \(10\, \mathrm{J}\) d'énergie potentielle, cela signifie qu'il y a ____ de \ (10\, \mathrm{J}\) d'énergie cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Une balle en chute libre perd de l'énergie potentielle et gagne une quantité égale d'énergie cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un corps en chute libre a une énergie potentielle maximale de \(250\, \mathrm{J}\), alors l'énergie mécanique totale du système est ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : À mesure que la hauteur de l'objet par rapport au niveau du sol augmente, son énergie potentielle augmente.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Le principe de conservation de l'énergie stipule que l'énergie ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'énergie mécanique totale correspond à

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : L'énergie existe sous de nombreuses formes ; cependant, toute énergie peut être classée comme énergie cinétique ou potentielle.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Dans un système isolé et sans frottement, l'énergie mécanique totale augmente toujours.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un véhicule en mouvement sur la route a _____ d'énergie.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'énergie mécanique implique ____.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Un avion en mouvement dans l'air ne possède que de l'énergie cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Dans un système isolé, s'il y a une perte de \(10\, \mathrm{J}\) d'énergie potentielle, cela signifie qu'il y a ____ de \ (10\, \mathrm{J}\) d'énergie cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Une balle en chute libre perd de l'énergie potentielle et gagne une quantité égale d'énergie cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un corps en chute libre a une énergie potentielle maximale de \(250\, \mathrm{J}\), alors l'énergie mécanique totale du système est ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : À mesure que la hauteur de l'objet par rapport au niveau du sol augmente, son énergie potentielle augmente.

Afficer la réponse

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Tables des matières
Tables des matières

Sauter à un chapitre clé

    Principe de conservation de l'énergie mécanique

    Comprenons d'abord ce qu'est l'énergie mécanique.

    L'énergie mécanique est la somme de l'énergie cinétique et de l'énergie potentielle d'un système qui peut être utilisée pour effectuer un travail utile.

    L'énergie existe sous de nombreuses formes ; cependant, toute énergie peut être classée comme énergie cinétique ou potentielle. La conservation de l'énergie mécanique repose sur le principe de la loi de conservation de l'énergie. Selon cette loi, l'énergie ne peut être ni créée ni détruite ; elle peut seulement être convertie d'une forme à une autre.

    Prenons un exemple pour trouver l'énergie mécanique d'un système.

    Le pilote d'un avion tire un coup de feu d'un poids de \(0,1\, \mathrm{kg}\) avec une vitesse de \(300\, \mathrm{m{\, s^{-2}}\). Calcule l'énergie mécanique de la grenaille lorsqu'elle se trouve à une hauteur de \(700 \N, \Nmathrm{m}\N) au-dessus du sol.

    Solution :

    D'après l'énoncé du problème, tu sais que : \(m=0,1\, \mathrm{kg}\) ; \(v=300\, \mathrm{m\,s^{-1}}\) ; \(h=700\, \mathrm{m}\) ; et \(g=9,8\, \mathrm{m\,s^{-2}}\).

    Tu veux calculer l'énergie mécanique, qui est la somme des énergies cinétique et potentielle. Ainsi

    \[\begin{align} \text{Énergie mécanique} &= \frac{1}{2}mv^2 + mgh \\\N- &= \frac{1}{2} (0.1\N,\mathrm{kg} )(300 \N,\mathrm{m\N,s^{-1}} )^2+(0.1,\mathrm{kg} ) (9,8\, \mathrm{m\, s^{-2}})(700\, \mathrm{m} )\N &=4500\, \mathrm{J} +686\N- \N- \N- \NMathrm{J} \N- &=5186\N, \Nmathrm{J}. \N-END{align} \]

    Loi de conservation de l'énergie mécanique

    Revenons à l'exemple du début, où tu as lâché la balle depuis la terrasse de ton immeuble.

    • Avant que tu ne lâches la balle, celle-ci n'est pas en mouvement. L'énergie cinétique de la balle est donc nulle. Elle ne possède que l'énergie potentielle gravitationnelle due à la hauteur.

    • Lorsque tu lâches la balle, elle commence à se déplacer vers le bas et acquiert de la vitesse. Puisque la balle a de la vitesse, elle a aussi de l'énergie cinétique.

    • Au fur et à mesure que la balle se rapproche du sol, sa hauteur par rapport au sol diminue, de même que son énergie potentielle. La vitesse de la balle continue d'augmenter à mesure qu'elle descend, tout comme son énergie cinétique.

    • Lorsque la balle touche finalement le sol, elle n'a plus que de l'énergie cinétique et son énergie potentielle devient nulle.

    Qu'observes-tu dans ce cas ? Tu vois que l'énergie potentielle est convertie en énergie cinétique. Dans cette perspective, définissons la loi de conservation de l'énergie mécanique.

    Dans un système isolé et sans frottement, l'énergie mécanique totale est toujours conservée. Si l'énergie disparaît sous une forme, elle réapparaît sous une autre forme en quantité équivalente.

    Remarque que dans notre exemple de la balle qui tombe, tu as négligé la résistance de l'air au mouvement de la balle sous l'effet de la force gravitationnelle. Si l'on tient compte de la force de frottement, une partie de l'énergie mécanique est convertie en énergie thermique.

    Formule de conservation de l'énergie mécanique

    Tu sais déjà que l'énergie totale du système se conserve et qu'elle est constante, disons \(C\N). Soit \(\text{KE}_\text{initial}\) et \(\text{PE}_\text{initial}\) les énergies cinétique et potentielle initiales du système, et \(\text{KE}_\text{final}\) et \(\text{PE}_\text{final}\) les énergies cinétique et potentielle finales du système. Selon la loi de conservation de l'énergie mécanique

    \[\text{KE}_\text{initial} + \text{PE}_\text{initial} = \text{KE}_\text{final} + \text{PE}_\text{final} = C.\N]

    Tu comprendras comment l'énergie totale en tout point est constante dans la prochaine section de cet article.

    Équation de conservation de l'énergie mécanique

    Voyons pourquoi la balle qui tombe de la terrasse a une énergie constante en tout point de son mouvement. Considère une balle qui tombe librement sous l'effet de la gravité, comme le montre la figure ci-dessous.

    Conservation de l'énergie mécanique Boule tombant librement sous l'effet de la gravité StudySmarterFig. 1 - Boule tombant librement sous l'effet de la gravité

    Considérons la balle de masse \(m\) lâchée du point \(A\) à une hauteur \(h\) au-dessus du sol. Voyons l'énergie totale de la balle dans trois cas différents.

    Cas 1 :

    Au point \(A\), l'énergie potentielle de la balle est de

    \[\text{PE}_\text{A}=mgh,\]

    et l'énergie cinétique de la balle est

    \[\text{KE}_\text{A}=0.\]

    Par conséquent, l'énergie totale de la balle au point \(A\) est donnée par

    \[\begin {align}\text{PE}_\text{A}+ \text{KE}_\text{A}& =mgh+0\\\N- &=0.\Nend{align} \]

    Cas 2 :

    Lorsque la balle tombe, son énergie potentielle diminue, mais son énergie cinétique augmente. Soit \(v\) la vitesse de la balle au point \(B\) à une distance \(x\) du point \(A\).

    Au point \N(B\N), l'énergie potentielle de la balle est

    \[\text{PE}_\text{B}=mg(h-x),\]

    et l'énergie cinétique de la balle est

    \[\text{KE}_\text{B}=\frac{1}{2}mv^2.\]

    Par conséquent, l'énergie totale de la balle au point \(B\) est donnée par

    \[\begin {align}\text{PE}_\text{B}+ \text{KE}_\text{B}& =mg(h-x)+\frac{1}{2}mv^2 \\N- &=mgh-mgx+\Nfrac{1}{2}m(2gx) \N- &=mgh-mgx+mgx\N&=mgh.\Nend{align} \]

    Notez que lorsque la balle est en mouvement du point \N(A\N) au point \N(B\N), sa vitesse initiale \N(u=0\N, \Nmathrm{m\N,s^{-1}}\N) et le déplacement \N(s=x\N). En le substituant à l'une des équations du mouvement, \N(v^2+u^2=2gs\N), tu obtiens \N(v^2=2gx\N).

    Cas 3 :

    Lorsque la balle tombe au sol au point \N(C\N), \N(h=0\N). Soit \(v\) la vitesse de la balle lorsqu'elle atteint le sol. L'énergie potentielle de la balle est alors

    \[\text{PE}_\text{C}=0,\]

    et l'énergie cinétique de la balle est

    \[\text{KE}_\text{C}=\frac{1}{2}mv^2.\]

    Par conséquent, l'énergie totale de la balle au point \(C\) est donnée par

    \[\begin {align}\text{PE}_\text{C}+ \text{KE}_\text{C}& =0+\frac{1}{2}mv^2\ &=\frac{1}{2}m(2gh)\\&=mgh.\Nend{align} \]

    Notez que lorsque la balle est en mouvement du point \N(A\N) au point \N(C\N), sa vitesse initiale \N(u=0\N, \Nmathrm{m\N,s^{-1}}\N) et le déplacement \N(s=h\N), qui est la hauteur de l'immeuble. En le substituant à l'une des équations du mouvement, \N(v^2+u^2=2gs\N), tu obtiens \N(v^2=2gh\N).

    Dans les trois cas, tu peux voir que l'énergie totale de la balle reste constante (c'est-à-dire qu'elle est toujours \(mgh\) dans ce cas).

    Exemples de conservation de l'énergie mécanique

    Voyons un exemple basé sur la conservation de l'énergie mécanique pour un corps en chute libre.

    Un corps de masse \(2\, \mathrm{kg}\) tombant librement sous l'effet de la gravité met \(6\, \mathrm{s}\) pour atteindre le sol. Calcule les énergies cinétique et potentielle du corps lorsqu'il a parcouru \(3\, \mathrm{s}\).

    Solution :

    Laissons tomber le corps d'une hauteur \(h\) au-dessus du sol. La vitesse initiale est de \(u=0 \, \mathrm{m\N,s^{-1}}\N), et l'accélération fournie par la gravité est de \(a=g=9.8\N, \mathrm{m\N,s^{-2}}\N). En utilisant l'équation du mouvement

    \[s=ut+\frac{1}{2}at^2 ,\]

    où \(s\) est le déplacement, tu obtiens

    \[\N- h&=(0 \N, \Nmathrm{m\N, s^{-1}})(6 \Nmathrm{s})+\Nfrac{1}{2}(9.8 \Nmathrm{m\N,s^{-2}})(6 \Nmathrm{s})^2\N &=176.4 \Nmathrm{m}.\Nend{align}\N].

    D'après la conservation de l'énergie mécanique, tu sais que l'énergie totale du corps est égale à l'énergie potentielle à la hauteur \(176,4 \N, \Nmathrm{m}) (parce qu'initialement, l'énergie cinétique sera nulle). C'est-à-dire

    \N- [\N- Début{align} \text{Total energy}&=mgh\\N&=(2\, \mathrm{kg})(9.8\, \mathrm{m\N,s^{-2}})(176.4\N, \mathrm{m})\N&=3457.44\N, \mathrm{J}. \N- [end{align}\N]

    Soit \N(v\N) la vitesse du corps lorsqu'il tombe pendant \N(t=3\N, \Nmathrm{s}\N). En utilisant l'équation du mouvement, tu obtiens

    \[\N- Début{align}v&=u+at\N- &=0\N, \Nmathrm{m\N,s^{-1}}+(9.8\N, \Nmathrm{m\N,s^{-2}})(3\N, \Nmathrm{s}) \N- &=29.4\N, \Nmathrm{m\N,s^{-1}}.\NFin{align}}\N-]

    L'énergie cinétique du corps est \[\N- Début {align}\N-texte{KE}&=\frac{1}{2}mv^2\&=\frac{1}{2}(2\, \Nmathrm{kg})(29.4\Nmathrm{m\N,s^{-1}})^2\N &=864.36\N, \Nmathrm{J}.\NFin{align}\N].

    L'énergie potentielle du corps est donc donnée par \N[\N- Début{align} \text{PE} &=\text{Énergie totale} - \text{KE}\ &=3457.44\, \mathrm{J} -864.36\, \mathrm{J} \\&=2593.08\,\mathrm{J}.\end{align}\]

    Considérons maintenant un scénario très intéressant lorsque le corps glisse sur un plan incliné.

    Un ballon de basket de masse \(0,2\, \mathrm{kg}\) roule sur un plan lisse incliné à l'angle \(30^\circ\) avec l'horizontale. Le ballon de basket part du repos au point \N(B), et atteint le point \N(A) avec une vitesse de \N(2, \Nmathrm{m\N,s^{-1}}). Trouve la distance entre \N(A\N) et \N(B\N).

    Solution :

    Conservation de l'énergie mécanique Un ballon de basket roulant sur une surface inclinée StudySmarterFig. 2 - Un ballon de basket roulant sur une surface inclinée

    Lorsque le ballon de basket descend de \(B\) à \(A\), il y a une diminution de l'énergie potentielle et une augmentation de l'énergie cinétique.

    La diminution de l'énergie potentielle est donnée par

    \[\begin{align}\text{Decrese in PE}&=mgh\\ &=mgx_m\sin30^\circ \\& =(0.2\, \mathrm{kg})(9.8\, \mathrm{m\,s^{-2}})(x_m\sin30^\circ)\\&=0.98x_m \, \mathrm{J}.\end{align}\]

    D'après la figure 2, la distance entre \N(A\N) et \N(B\N) est notée \N(x_m\N) et la distance verticale parcourue par le ballon de basket est \N(x_m\Nsin30^\circ \N). Tu peux donc remplacer \(h=x_m\sin30^\circ \) par \(x_m\sin30^\circ \).

    L'augmentation de l'énergie cinétique est donnée par \[\cbegin{align}\text{Augmentation de l'énergie cinétique}&=\frac{1}{2}mv^2-\frac{1}{2}mu^2\\ &=\frac{1}{2}(0.2\, \mathrm{kg})(2\,\mathrm{m\, s^{-1}})^2-\frac{1}{2}(0,2\,\mathrm{kg})(0)^2 \\& =0,4\mathrm{J}.\N- [end{align}\N].

    En appliquant la loi de conservation de l'énergie mécanique, tu peux dire que la diminution de l'énergie potentielle est égale à une augmentation de l'énergie cinétique. C'est-à-dire \[\begin{align}\text{Diminution de PE}&=\text{Augmentation de KE}]. \N0,98x_m &=0,4\Nx_m& \Napprox 0,4\N, \Nmathrm{m}\Nend{align} \]

    La distance entre \N(A\N) et \N(B\N) est d'environ \N(0,4\N,\Nmathrm{m}\N).

    Conservation de l'énergie mécanique - Principaux enseignements

    • L'énergie mécanique est la somme de l'énergie cinétique et de l'énergie potentielle d'un système qui peut être utilisée pour effectuer un travail utile.
    • Selon la loi de conservation de l'énergie, dans un système isolé et sans frottement, l'énergie mécanique totale est toujours conservée. Si l'énergie disparaît sous une forme, elle réapparaît sous une autre forme en quantité équivalente.
    • Tu peux utiliser \[\text{KE}_\text{initial}]. + \text{PE}_\text{initial} = \text{KE}_\text{final} + \text{PE}_\text{final} = C\] formule pour trouver la conservation de l'énergie mécanique.
    • L'énergie mécanique totale reste constante en tout point d'un objet en mouvement.
    Questions fréquemment posées en Conservation de l'énergie mécanique
    Qu'est-ce que la conservation de l'énergie mécanique?
    La conservation de l'énergie mécanique est un principe où l'énergie totale d'un système isolé (somme de l'énergie cinétique et potentielle) reste constante si seules des forces conservatrices agissent.
    Quels sont des exemples de conservation de l'énergie mécanique?
    Des exemples incluent le mouvement d'un pendule, une montagne russe et un projectile en l'absence de résistance de l'air.
    Pourquoi la conservation de l'énergie mécanique est-elle importante?
    Elle est importante car elle permet de prédire le comportement d'un système sans connaître tous les détails des forces internes.
    Comment prouver la conservation de l'énergie mécanique?
    Pour prouver, montrer que la somme de l'énergie cinétique et potentielle est constante en utilisant les formules de chaque type d'énergie et en vérifiant cette somme à différents points du mouvement.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Le principe de conservation de l'énergie stipule que l'énergie ____.

    L'énergie mécanique totale correspond à

    Vrai ou faux : L'énergie existe sous de nombreuses formes ; cependant, toute énergie peut être classée comme énergie cinétique ou potentielle.

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 11 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !