Fonctions Linéaires

La fonction la plus simple que l'on puisse représenter sur un plan est une fonction linéaire. Même si elles sont simples, les fonctions linéaires sont importantes ! Dans AP Calculus, nous étudions les lignes qui sont tangentes aux courbes (ou qui les touchent), et lorsque nous zoomons suffisamment sur une courbe, elle ressemble et se comporte comme une ligne !

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Fonctions Linéaires

  • Temps de lecture: 19 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Dans cet article, nous discutons en détail de ce qu'est une fonction linéaire, de ses caractéristiques, de son équation, de sa formule, de son graphique, de son tableau, et nous passons en revue plusieurs exemples.

    • Définition d'une fonction linéaire
    • Équation d'une fonction linéaire
    • Formule de la fonction linéaire
    • Graphique d'une fonction linéaire
    • Tableau de fonctions linéaires
    • Exemples de fonctions linéaires
    • Fonctions linéaires - points clés à retenir

    Définition de la fonction linéaire

    Qu'est-ce qu'une fonction linéaire?

    Une fonction linéaire est une fonction polynomiale dont le degré est égal à 0 ou 1. Cela signifie que chaque terme de la fonction est soit une constante, soit une constante multipliée par une seule variable dont l'exposant est soit 0, soit 1.

    Lorsqu'elle est représentée graphiquement, une fonction linéaire est une ligne droite dans un plan de coordonnées.

    Par définition, une ligne est droite, donc dire "ligne droite" est redondant. Nous utilisons souvent le terme "ligne droite" dans cet article, mais il suffit de dire "ligne".

    Caractéristiques des fonctions linéaires

    • Lorsque nous disons que est une fonction linéaire de , nous voulons dire que le graphique de la fonction est une ligne droite.

    • La pente d'une fonction linéaire est également appelée taux de variation.

    • Une fonction linéaire croît à un rythme constant.

    L'image ci-dessous montre :

    • le graphique de la fonction linéaireet
    • un tableau d'exemples de valeurs de cette fonction linéaire.

    Fonctions linéaires le graphique et le tableau des valeurs d'échantillon d'une fonction linéaire StudySmarterLe graphique et le tableau des exemples de valeurs d'une fonction linéaire, StudySmarter Originals

    Remarque que lorsque augmente de 0,1, la valeur de augmente de 0,3, ce qui signifie que augmente trois fois plus vite que .

    Par conséquent, la pente du graphique de , 3, peut être interprétée comme le taux de changement de par rapport à .

    • Une fonction linéaire peut être une ligne croissante, décroissante ou horizontale.

      • Les fonctions linéairescroissantes ont unepente positive .

      • Les fonctions linéairesdécroissantes ont unepente négative .

      • Les fonctions linéaireshorizontales ont une pente nulle.

    • L'ordonnée à l'origine d' une fonction linéaire est la valeur de la fonction lorsque la valeur x est nulle.

      • Cette valeur est également appelée valeur initiale dans les applications du monde réel.

    Fonctions linéaires et non linéaires

    Les fonctions linéaires sont un type particulier de fonction polynomiale. Toute autre fonction qui ne forme pas une ligne droite lorsqu'elle est représentée sur un plan de coordonnées est appelée fonction non linéaire.

    Voici quelques exemples de fonctions non linéaires :

    • toute fonction polynomiale d'un degré égal ou supérieur à 2, telle que
      • les fonctions quadratiques
      • les fonctions cubiques
    • les fonctions rationnelles
    • fonctions exponentielles et logarithmiques

    Lorsque nous pensons à une fonction linéaire en termes algébriques, deux choses nous viennent à l'esprit :

    • L'équation et

    • Les formules

    Équation d'une fonction linéaire

    Une fonction linéaire est une fonction algébrique, et la fonction linéaire parente est :

    Qui est une ligne qui passe par l'origine.

    En général, une fonction linéaire est de la forme :

    et sont des constantes.

    Dans cette équation,

    • est la pente de la ligne
    • est l'ordonnée à l'origine de la droite
    • est la variable indépendante
    • ou est la variable dépendante

    Formule de la fonction linéaire

    Il existe plusieurs formules qui représentent les fonctions linéaires. Toutes peuvent être utilisées pour trouver l'équation de n'importe quelle ligne (sauf les lignes verticales), et celle que nous utilisons dépend des informations disponibles.

    Comme les lignes verticales ont une pente indéfinie (et échouent au test de la ligne verticale), ce ne sont pas des fonctions !

    Forme standard

    La forme standard d'une fonction linéaire est :

    sont des constantes.

    Forme de l'ordonnée à l'origine

    La forme de l'ordonnée à l'origine d'une fonction linéaire est la suivante :

    Où :

    • est un point sur la ligne.

    • est la pente de la ligne.

      • Rappelle-toi : la pente peut être définie comme , où et sont deux points quelconques de la ligne.

    Forme point-pente

    La forme point-pente d'une fonction linéaire est :

    Où :

    • est un point sur la ligne.

    • est un point fixe quelconque sur la ligne.

    Forme de l'ordonnée à l'origine

    La forme de l'ordonnée à l'origine d'une fonction linéaire est :

    Où :

    • est un point sur la ligne.

    • et sont respectivement l'ordonnée à l'origine des x et l'ordonnée à l'origine des y.

    Graphique d'une fonction linéaire

    Le graphique d'une fonction linéaire est assez simple : il s'agit simplement d'une ligne droite sur le plan de coordonnées. Dans l'image ci-dessous, les fonctions linéaires sont représentées sous la forme d'une intersection de pente. (La variable indépendante, , est multipliée par un nombre qui détermine la pente (ou gradient) de cette ligne, et détermine l'endroit où la ligne traverse l'axe des ordonnées (appelé l'ordonnée à l'origine).

    Fonctions linéaires graphique de deux lignes sur le même plan de coordonnées StudySmarterLes graphiques de deux fonctions linéaires, StudySmarter Originals

    Représentation graphique d'une fonction linéaire

    De quelles informations avons-nous besoin pour représenter graphiquement une fonction linéaire ? D'après les formules ci-dessus, nous avons besoin de :

    • deux points sur la ligne, ou

    • d'un point sur la ligne et de sa pente.

    Utilisation de deux points

    Pour représenter graphiquement une fonction linéaire à l'aide de deux points, il faut soit qu'on nous donne deux points à utiliser, soit que nous introduisions les valeurs de la variable indépendante et que nous résolvions la variable dépendante pour trouver deux points.

    • Si l'on nous donne deux points, la représentation graphique de la fonction linéaire consiste simplement à tracer les deux points et à les relier par une ligne droite.

    • En revanche, si l'on nous donne la formule d'une équation linéaire et que l'on nous demande de la représenter graphiquement, il y a plus d'étapes à suivre.

    Trace le graphique de la fonction :

    Solution :

    1. Trouve deux points sur la ligne en choisissant deux valeurs pour .
      • Prenons les valeurs et .
    2. Substitue les valeurs que nous avons choisies pour dans la fonction et résous les valeurs y correspondantes.
      • Nos deux points sont donc : et .
    3. Reporte les points sur une plaque de coordonnées et relie-les par une ligne droite.
      • N'oublie pas de prolonger la ligne au-delà des deux points, car une ligne n'a pas de fin !
      • Le graphique se présente donc comme suit :
      • Fonctions linéaires représentation graphique d'une droite à partir de deux points StudySmarterLe graphique d'une droite utilisant deux points, StudySmarter Originals

    Utiliser la pente et l'ordonnée à l'origine

    Pour représenter graphiquement une fonction linéaire à l'aide de sa pente et de son ordonnée à l'origine, nous traçons l'ordonnée à l'origine sur un plan de coordonnées et nous utilisons la pente pour trouver un deuxième point à tracer.

    Fais le graphique de la fonction :

    Solution :

    1. Trace l'ordonnée à l'origine, qui est de la forme : .
      • L'ordonnée à l'origine de cette fonction linéaire est :
    2. Écris la pente sous forme de fraction (si ce n'est pas déjà le cas !) et identifie la "montée" et la "descente".
      • Pour cette fonction linéaire, la pente est .
        • Donc, et .
    3. En partant de l'ordonnée à l'origine, déplace-toi verticalement par la "montée" puis horizontalement par la "descente".
      • Note que : si la montée est positive, nous nous déplaçons vers le haut, et si la montée est négative, nous nous déplaçons vers le bas.
      • Et note que : si la course est positive, nous nous déplaçons vers la droite, et si la course est négative, nous nous déplaçons vers la gauche.
      • Pour cette fonction linéaire,
        • Nous "montons" d'une unité.
        • Nous "courons" vers la droite de 2 unités.
    4. Relie les points avec une ligne droite, et prolonge-la au-delà des deux points.
      • Ainsi, le graphique ressemble à :
      • Fonctions linéaires un graphique d'une ligne en utilisant son ordonnée à l'origine et sa pente StudySmarterUtiliser la pente et l'ordonnée à l'origine pour tracer le graphique d'une droite, StudySmarter Originals

    Domaine et étendue d'une fonction linéaire

    Pourquoi prolongeons-nous le graphique d'une fonction linéaire au-delà des points que nous utilisons pour le tracer ? Nous le faisons parce que le domaine et l'étendue d'une fonction linéaire sont tous deux l'ensemble de tous les nombres réels !

    Domaine

    Toute fonction linéaire peut prendre n'importe quelle valeur réelle de comme entrée et donner une valeur réelle de comme sortie. Cela peut être confirmé en regardant le graphique d'une fonction linéaire. À mesure que l'on se déplace le long de la fonction, pour chaque valeur de , il n'y a qu'une seule valeur correspondante de .

    Par conséquent, tant que le problème ne nous donne pas un domaine limité, le domaine d'une fonction linéaire est :

    Plage

    De plus, les sorties d'une fonction linéaire peuvent aller de l'infini négatif à l'infini positif, ce qui signifie que l'étendue est également l'ensemble de tous les nombres réels. Cela peut également être confirmé en regardant le graphique d'une fonction linéaire. À mesure que l'on se déplace le long de la fonction, pour chaque valeur de , il n'y a qu'une seule valeur correspondante de .

    Par conséquent, tant que le problème ne nous donne pas un intervalle limité, et , l'intervalle d'une fonction linéaire est :

    Lorsque la pente d'une fonction linéaire est 0, il s'agit d'une ligne horizontale. Dans ce cas, le domaine est toujours l'ensemble des nombres réels, mais l'étendue est juste b.

    Tableau des fonctions linéaires

    Les fonctions linéaires peuvent également être représentées par un tableau de données qui contient des paires de valeurs x et y. Pour déterminer si un tableau donné de ces paires est une fonction linéaire, nous suivons trois étapes :

    1. Calcule les différences entre les valeurs x.

    2. Calcule les différences entre les valeurs y.

    3. Compare le rapport pour chaque paire.

      • Si ce rapport est constant, le tableau représente une fonction linéaire.

    Nous pouvons également vérifier si un tableau de valeurs x et y représente une fonction linéaire en déterminant si le taux de variation de par rapport à (également connu sous le nom de pente) reste constant.

    En général, un tableau représentant une fonction linéaire ressemble à ceci :

    Valeur xvaleur y
    14
    25
    36
    47

    Identifier une fonction linéaire

    Déterminer si une fonction est une fonction linéaire dépend de la façon dont la fonction est présentée.

    • Si une fonction est présentée de façon algébrique :

      • alors il s'agit d'une fonction linéaire si la formule ressemble à : .

    • Si une fonction est présentée graphiquement :

      • alors c'est une fonction linéaire si le graphique est une ligne droite.

    • Si une fonction est présentée à l'aide d'un tableau :

      • il s'agit d'une fonction linéaire si le rapport entre la différence des valeurs y et la différence des valeurs x est toujours constant. Voyons un exemple de cette fonction

    Détermine si le tableau donné représente une fonction linéaire.

    Valeur xvaleur y
    315
    523
    731
    1147
    1355

    Solution :

    Pour déterminer si les valeurs données dans le tableau représentent une fonction linéaire, nous devons suivre les étapes suivantes :

    1. Calcule les différences entre les valeurs x et les valeurs y.
    2. Calcule les rapports de la différence en x sur la différence en y.
    3. Vérifie si le rapport est le même pour toutes les paires X,Y.
      • Si le rapport est toujours le même, la fonction est linéaire !

    Appliquons ces étapes au tableau donné :

    Fonctions linéaires déterminer si un tableau de valeurs représente une fonction linéaire StudySmarterDéterminer si un tableau de valeurs représente une fonction linéaire, StudySmarter Originals.

    Puisque tous les nombres dans la case verte de l'image ci-dessus sont les mêmes, le tableau donné représente une fonction linéaire.

    Types particuliers de fonctions linéaires

    Il existe quelques types spéciaux de fonctions linéaires auxquels nous aurons probablement affaire en calcul. Ce sont :

    • Les fonctions linéaires représentées comme des fonctions par morceaux et

    • les paires de fonctions linéaires inverses.

    Fonctions linéaires par morceaux

    Dans notre étude du calcul, nous aurons affaire à des fonctions linéaires qui peuvent ne pas être définies uniformément dans tout leur domaine. Il se peut qu'elles soient définies de deux façons ou plus, car leur domaine est divisé en deux parties ou plus.

    Dans ce cas, on parle de fonctions linéaires par morceaux.

    Trace le graphique de la fonction linéaire par morceaux suivante :

    Le symbole ∈ ci-dessus signifie "est un élément de".

    Solution :

    Cette fonction linéaire a deux domaines finis :

    • et

    En dehors de ces intervalles, la fonction linéaire n'existe pas. Par conséquent, lorsque nous tracerons le graphique de ces lignes, nous ne ferons en fait que tracer les segments de ligne définis par les points d'extrémité des domaines.

    1. Détermine les extrémités de chaque segment de droite.
      • Pour , les extrémités sont et .
      • Remarque que dans le domaine de x+2, le 1 est entouré d'une parenthèse au lieu d'un crochet. Cela signifie que le 1 n'est pas inclus dans le domaine de x+2 ! Il y a donc un "trou" dans la fonction.

      • Pour , les points d'extrémité sont et .
    2. Calcule les valeurs y correspondantes à chaque extrémité.
      • Sur le domaine :
        • valeur xvaleur y
          -2
          1
      • Sur le domaine :
        • valeur xvaleur y
          1
          2
    3. Reporte les points sur un plan de coordonnées et relie les segments par une ligne droite.
      • Fonctions linéaires graphique d'une fonction linéaire par morceaux StudySmarterLe graphique d'une fonction linéaire par morceaux, StudySmarter Originals

    Fonctions linéaires inverses

    De même, nous traiterons également des fonctions linéaires inverses, qui sont l'un des types de fonctions inverses. Pour expliquer brièvement, si une fonction linéaire est représentée par :

    Alors son inverse est représentée par :

    telle que

    L'exposant, -1, n'est pas une puissance. Il signifie "l'inverse de", et non "f à la puissance -1".

    Trouve l'inverse de la fonction :

    Solution :

    1. Remplace par .
    2. Remplace par , et par .
    3. Résous cette équation pour .
    4. Remplace par .

    Si nous représentons graphiquement et sur le même plan de coordonnées, nous remarquerons qu'ils sont symétriques par rapport à la ligne . Il s'agit d'une caractéristique des fonctions inverses.

    Fonctions linéaires graphique des fonctions linéaires inverses et leur ligne de symétrie StudySmarterLe graphique d'une paire de fonctions linéaires inverses et leur ligne de symétrie, StudySmarter Originals

    Exemples de fonctions linéaires

    Applications des fonctions linéaires dans le monde réel

    Les fonctions linéaires ont plusieurs utilisations dans le monde réel. En voici quelques-unes :

    • Problèmes de distance et de taux en physique

    • Calcul des dimensions

    • Déterminer le prix des choses (pense aux taxes, aux frais, aux pourboires, etc. qui sont ajoutés au prix des choses).

    Disons que tu aimes jouer à des jeux vidéo.

    Tu t'abonnes à un service de jeux qui facture des frais mensuels de 5,75 $, plus des frais supplémentaires de 0,35 $ pour chaque jeu téléchargé.

    Nous pouvons écrire tes frais mensuels réels à l'aide de la fonction linéaire :

    est le nombre de jeux que tu télécharges en un mois.

    Fonctions linéaires : Exemples de problèmes résolus

    Écris la fonction donnée sous forme de paires ordonnées.

    Solution :

    Les paires ordonnées sont : et .

    Trouve la pente de la droite pour ce qui suit.

    Solution :

    1. Écris la fonction donnée sous forme de paires ordonnées.
    2. Calcule la pente à l'aide de la formule : correspond à respectivement.
      • La pente de la fonction est donc de 1.

    Trouve l'équation de la fonction linéaire donnée par les deux points :

    Solution :

    1. En utilisant la formule de la pente, calcule la pente de la fonction linéaire.
    2. En utilisant les valeurs données par les deux points et la pente que nous venons de calculer, nous pouvons écrire l'équation de la fonction linéaire sous la forme point-pente.
      • - La forme point-pente d'une ligne.
      • - Remplace les valeurs de .
      • - distribue le signe négatif.
      • - distribue les 4.
      • - simplifie.
      • est l'équation de la droite.

    La relation entre Fahrenheit et Celsius est linéaire. Le tableau ci-dessous présente quelques-unes de leurs valeurs équivalentes. Trouve la fonction linéaire représentant les données du tableau.

    Celsius (°C)Fahrenheit (°F)
    541
    1050
    1559
    2068

    Solution :

    1. Pour commencer, nous pouvons choisir deux paires de valeurs équivalentes dans le tableau. Ce sont les points de la ligne.
      • Choisissons et .
    2. Calcule la pente de la droite entre les deux points choisis.
      • La pente est donc de 9/5.
    3. Écris l'équation de la droite en utilisant la forme point-pente.
      • - Ecris l'équation de la droite en utilisant la forme point-pente d'une droite.
      • - Remplace les valeurs de .
      • - distribue la fraction et annule les termes.
      • - simplifie.
    4. Note que d'après le tableau,
      • Nous pouvons remplacer , la variable indépendante, par , pour Celsius, et
      • Nous pouvons remplacer , la variable dépendante, par , pour Fahrenheit.
      • Nous avons donc :
        • est la relation linéaire entre Celsius et Fahrenheit.

    Disons que le coût de la location d'une voiture peut être représenté par la fonction linéaire :

    est le nombre de jours de location de la voiture.

    Quel est le coût de la location de la voiture pour 10 jours ?

    Solution :

    1. Substitue dans la fonction donnée.
      • - substituer.
      • - simplifie.

    Ainsi, le coût de la location de la voiture pour 10 jours est de 320 $.

    Pour compléter le dernier exemple, disons que nous savons combien une personne a payé pour louer une voiture. Disons que nous savons combien quelqu'un a payé pour louer une voiture, en utilisant la même fonction linéaire.

    Si Jake a payé 470 $ pour louer une voiture, combien de jours l'a-t-il louée ?

    Solution :

    Nous savons que , où est le nombre de jours de location de la voiture. Donc, dans ce cas, nous remplaçons par 470 et nous résolvons .

    1. - remplace les valeurs connues.
    2. - combine les termes similaires.
    3. - divise par 30 et simplifie.
    4. Jake a donc loué la voiture pour 15 jours.

    Détermine si la fonction est une fonction linéaire.

    Solution :

    Nous devons isoler la variable dépendante pour nous aider à visualiser la fonction. Ensuite, nous pouvons vérifier si elle est linéaire en la représentant graphiquement.

    1. - Déplace tous les termes, sauf la variable dépendante, d'un côté de l'équation.
    2. - divise par -2 pour simplifier.
      • Nous pouvons maintenant voir que la variable indépendante, , a une puissance de 1. Cela nous indique qu'il s'agit d 'une fonction linéaire.
    3. Nous pouvons vérifier nos résultats en traçant le graphique :
      • Fonctions linéaires graphique d'une ligne StudySmarterLe graphique d'une ligne, StudySmarter Originals

    Détermine si la fonction est une fonction linéaire.

    Solution :

    1. Réarrange et simplifie la fonction pour obtenir une meilleure visualisation.
      • - distribue le .
      • - déplace tous les termes sauf la variable dépendante d'un côté.
      • - divise par 2 pour simplifier.
    2. Maintenant, nous pouvons voir que puisque la variable indépendante a une puissance de 2, il ne s'agit pas d'une fonction linéaire.
    3. Nous pouvons vérifier que la fonction n'est pas linéaire en la représentant graphiquement :
      • Fonctions linéaires graphique d'une fonction non linéaire StudySmarterLe graphique d'une fonction non linéaire, StudySmarter Originals

    Fonctions linéaires - Points clés

    • Une fonction linéaire est une fonction dont l'équation est : et dont le graphique est une ligne droite.
      • Une fonction de toute autre forme est une fonction non linéaire.
    • La formule de la fonction linéaire peut prendre plusieurs formes :
      • Forme standard :
      • Forme de l'ordonnée à l'origine :
      • Forme point-pente :
      • Forme de l'ordonnée à l'origine :
    • Si la pente d'une fonction linéaire est égale à 0, il s'agit d'une ligne horizontale, que l'on appelle une fonction constante.
    • Uneligne verticale n'est pas une fonction linéaire car elle ne satisfait pas au test de la ligne verticale.
    • Le domaine et l'étendue d'une fonction linéaire sont l'ensemble de tous les nombres réels.
      • Mais l'étendue d'une fonction constante est juste , l'ordonnée à l'origine.
    • Une fonction linéaire peut être représentée à l'aide d'un tableau de valeurs.
    • Les fonctions linéaires par morceaux sont définies de deux façons ou plus, car leur domaine est divisé en deux parties ou plus.
    • Les paires de fonctions linéaires inverses sont symétriques par rapport à la ligne .
      • Une fonction constante n' a pas d'inverse car elle n'est pas une fonction biunivoque.
    Questions fréquemment posées en Fonctions Linéaires
    Qu'est-ce qu'une fonction linéaire ?
    Une fonction linéaire est une fonction de la forme f(x) = mx où m est une constante. Elle produit une droite passant par l'origine (0,0).
    Comment déterminer le coefficient directeur d'une fonction linéaire ?
    Le coefficient directeur d'une fonction linéaire f(x) = mx est le nombre m. Il indique la pente de la droite.
    Quelle est la différence entre une fonction linéaire et affine ?
    Les fonctions linéaires ont la forme f(x) = mx et passent par l'origine, tandis que les fonctions affines ont la forme f(x) = mx + b avec b ≠ 0, et ne passent pas par l'origine.
    Comment tracer un graphique de fonction linéaire ?
    Pour tracer un graphique de fonction linéaire, utilisez la forme f(x) = mx, choisissez quelques valeurs de x, calculez f(x), et tracez ces points, puis dessinez la droite passant par eux.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    La pente d'une fonction linéaire est également appelée...

    Les fonctions linéairescroissantes ont...

    Les fonctions linéairesdécroissantes ont...

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 19 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !