Nombre

Si nous y réfléchissons un instant, les chiffres sont partout dans notre vie quotidienne. Ils nous aident à penser logiquement et à garder une trace des choses que nous faisons. Par exemple, les chiffres nous aident dans des tâches simples comme calculer le temps qu'il te faut pour aller de chez toi à ton lieu de travail, la somme d'argent dont tu as besoin pour payer tes courses, et la quantité de sacs dont tu as besoin pour ramener tes courses à la maison. En plus de cela, ils sont aussi particulièrement utiles pour résoudre des problèmes plus complexes dans le monde des sciences et de l'ingénierie, comme le calcul de la quantité de carburant qui sera nécessaire pour envoyer une fusée dans l'espace, ou le nombre de camions dont un entrepôt a besoin pour transporter les commandes de ses clients en toute sécurité et dans les délais impartis.

C'est parti Inscris-toi gratuitement
Nombre Nombre

Crée des supports d'apprentissage sur Nombre avec notre appli gratuite!

  • Accès instantané à des millions de pièces de contenu
  • Fiches de révision, notes, examens blancs et plus encore
  • Tout ce dont tu as besoin pour réussir tes examens
Inscris-toi gratuitement

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Convertis des documents en flashcards gratuitement avec l'IA

Tables des matières
Table des mateères

    Dans cet article, nous définirons ce que sont les nombres, et nous explorerons les principaux types de nombres que tu peux trouver afin que tu puisses les reconnaître plus facilement. Nous expliquerons également ce qui est étudié par la théorie des nombres, les différents systèmes de nombres et le concept de suite de nombres.

    Que sont les nombres ?

    Les nombres sont considérés comme le cœur des mathématiques, et à juste titre, car sans eux, les mathématiques n'existeraient tout simplement pas.

    Un nombre est un concept mathématique qui représente une quantité, laquelle a de nombreuses applications telles que compter, mesurer, étiqueter et effectuer des calculs qui nous aident à résoudre des problèmes, entre autres.

    Exemples de nombres

    Les nombres se présentent sous de nombreuses formes. En voici quelques exemples.

    Exemples de nombres de différents types :

    \N[-3,0,2,3,8,\Ndfrac{3}{4},\Npi, \Ntext{and} \Nsqrt{2}\N].

    Comme tu peux le constater, il existe de nombreux types de nombres, identifions chacun d'entre eux dans la section suivante afin de pouvoir les reconnaître plus facilement.

    Types de nombres

    Les nombres peuvent être classés en différents groupes en fonction des types de nombres qu'ils comprennent. Jetons un coup d'œil.

    Nombres naturels et entiers

    Les nombresnaturels sont également connus sous le nom de nombres à compter, car c'est avec ces nombres que tu apprends à compter pour la première fois. Ils comprennent tous les nombres positifs supérieurs à zéro. C'est-à-dire \N(1, 2, 3, 4, 5, 6\N), et ainsi de suite.

    Ils sont représentés par la lettre \N(\Nmathbb N\N). La notation ensembliste des nombres naturels est la suivante :

    \[\mathbb{N}=\{1,2,3,4,5,...\}\]

    Les nombres entiers sont étroitement liés aux nombres naturels, à une différence près, comme tu peux le voir dans la définition ci-dessous.

    Les nombresentiers sont essentiellement les nombres naturels plus zéro. Ils ne comprennent pas les nombres négatifs, les fractions ou les décimales.

    Ils sont représentés par la lettre \(\mathbb{W}\), et leur notation ensembliste est illustrée ci-dessous :

    \[\mathbb{W}=\{0,1,2,3,4,5,...\}\]

    Tous les nombres naturels sont des nombres entiers, mais tous les nombres entiers ne sont pas des nombres naturels, c'est le cas de zéro. Voyons cela dans un diagramme.

    Nombre Nombres naturels et entiers StudySmarterReprésentation des nombres naturels et entiers - StudySmarter Originals

    Les nombres naturels et entiers peuvent être représentés sur la droite numérique comme suit :

    Nombre naturel et nombres entiers sur la droite numérique StudySmarterLes nombres naturels et entiers sur la droite numérique - StudySmarter Originals

    Les nombres entiers

    Les nombres enti ers comprennent tous les nombres positifs, zéro et les nombres négatifs. Encore une fois, les nombres entiers n'incluent pas les fractions ou les décimales.

    Ils sont représentés par la lettre \(\mathbb{Z}\), et leur notation ensembliste est la suivante :

    \[\mathbb{Z}=\{...,-4,-3,-2,-1,0,1,2,3,4,...\}\]

    Si nous élargissons le diagramme précédent pour y inclure les nombres entiers, il ressemblera à ceci :

    Les nombres entiers StudySmarterReprésentation des entiers - StudySmarter Originals

    En regardant le diagramme ci-dessus, nous pouvons dire que tous les nombres entiers ne sont pas des nombres naturels et entiers, mais que tous les nombres naturels et entiers sont des nombres entiers. Sur la droite numérique, les nombres entiers peuvent être représentés comme ceci :

    Nombre Les nombres entiers sur la droite numérique StudySmarterLes nombres entiers sur la droite numérique - StudySmarter Originals

    Voici quelques exemples de nombres entiers :

    \[-45,12,-1,0,23\space\text{and}\space 946\]

    Nombres rationnels et irrationnels

    Lesnombres rationnels comprennent tous les nombres qui peuvent être exprimés comme une fraction sous la forme \(\dfrac{p}{q}\), où \(p\) et \(q\) sont des nombres entiers et \(q\neq 0\). Ce groupe de nombres comprend les fractions et les décimales. Les nombres rationnels sont représentés par la lettre \(\mathbb{Q}\).

    Tous les nombres entiers, naturels et entiers sont des nombres rationnels, car ils peuvent être exprimés sous la forme d'une fraction dont le dénominateur est \(1\). Par exemple, \(3\) peut être exprimé sous forme de fraction comme ceci : \(\dfrac{3}{1}\).

    Nombre Nombres rationnels StudySmarterReprésentation des nombres rationnels - StudySmarter Originals

    Voici quelques exemples de nombres rationnels :

    \[-5.7,-\dfrac{3}{2},0,\dfrac{1}{2},\space\text{and}\space 0.75\]

    Définissons maintenant ce que nous entendons par nombres irrationnels.

    Les nombresirrationnels sont des nombres qui ne peuvent pas être exprimés sous la forme d'une fraction de deux nombres entiers. Les nombres irrationnels ont des décimales qui ne se répètent pas, qui ne se terminent jamais et qui n' ont aucune forme. Ils sont représentés par la lettre \(\mathbb{Q}'\).

    Nombre Nombres irrationnels StudySmarterReprésentation des nombres irrationnels - StudySmarter Originals

    Voici quelques exemples de nombres irrationnels :

    \[\sqrt{2},\sqrt{3},\sqrt{5}\space \text{et}\space \pi\].

    Il existe des nombres avec des décimales sans terminaison qui sont en fait rationnels. C'est le cas des nombres à décimales non terminales qui se répètent selon un schéma, car ils peuvent être exprimés sous la forme d'une fraction de deux nombres entiers. Par exemple, \(\dfrac{1}{9}=0.\bar{1}\), la barre au-dessus de la décimale \(1\) signifie qu'elle se répète éternellement. C'est donc un nombre rationnel.

    Lis Convertir entre fractions et décimales pour en savoir plus sur les différents types de nombres décimaux.

    Les nombres réels

    Lesnombres réels comprennent tous les nombres auxquels tu peux penser et que tu peux trouver dans le monde réel, à l'exception des nombres imaginaires. Les nombres réels sont représentés par la lettre \(\mathbb{R}\), et ils comprennent tous les nombres rationnels et irrationnels. L'ensemble des nombres réels peut donc être représenté par \(\mathbb{R}=\mathbb{Q}\cup \mathbb{Q}'\).

    Nombre Nombres réels StudySmarterReprésentation des nombres réels - StudySmarter Originals

    Voici quelques exemples de nombres réels :

    \[-\dfrac{5}{2},-1,0,0.\bar{3},2.45,\sqrt{5},\space\text{and}\space \pi\]

    Outre les nombres réels, les mathématiciens ont créé un type de nombre spécial pour pouvoir résoudre la racine carrée des nombres négatifs, inclus dans les équations quadratiques simples telles que \(x^2+9=0\). Si nous essayons de résoudre cette équation à l'aide de l'algèbre, nous obtenons ce qui suit :

    \[\begin{align}x^2+9&=0\\x^2+9-9&=-9\\x^2&=-9\\\sqrt{x^2}&=\sqrt{-9}\\x&=\sqrt{-9}\end{align}\]

    Mais en utilisant uniquement des nombres réels, nous ne pouvons pas aller plus loin. C'est alors que les nombres imaginaires entrent en jeu.

    Les nombres imaginaires

    Lesnombres imag inaires sont la racine des nombres négatifs.

    Nous savons que nous ne pouvons pas prendre la racine carrée des nombres négatifs, parce qu'il n'existe aucun nombre qui, une fois élevé au carré, donne un nombre négatif. Dans ce cas, nous devons utiliser les nombres imaginaires. Pour ce faire, nous disons que \(\sqrt{-1}=i\). Voyons cela plus clairement à l'aide d'un exemple.

    Résous \(\sqrt{-9}\) en utilisant les nombres imaginaires.

    \(\sqrt{-9}\) peut être écrit comme \(\sqrt{9(-1)}=\sqrt{9}\times\sqrt{-1}\).

    Si nous remplaçons \(\sqrt{-1}\) par \(i\),

    alors nous pouvons dire que

    \N- [\N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N]

    \[\sqrt{-9}=3i\]

    Explorons maintenant quelques autres concepts liés au thème des nombres.

    La théorie des nombres

    Qu'entendons-nous par théorie des nombres ?

    La théorie desnombres est la branche des mathématiques qui étudie les nombres entiers positifs, leurs propriétés et leurs relations.

    Les types de nombres étudiés par la théorie des nombres peuvent être classés dans certaines des catégories présentées dans le tableau ci-dessous.

    NomDéfinitionExemples d'application
    PairNombres entiers divisibles par 2.\(2,4,6,8,10,12,14,...\)
    ImpairsNombres entiers qui ne peuvent pas être divisés par \(2\). \(1,3,5,7,9,11,13,...\)
    CarréNombres entiers qui résultent de la multiplication d'un nombre par lui-même.\(1,4,9,16,25,36,49,...\)
    CubeNombres entiers résultant de la multiplication d'un nombre par lui-même 3 fois. \(1,8,27,64,125,216,343,...\)
    Nombres premiersCe type de nombres n'a que 2 facteurs, car ils ne sont divisibles que par eux-mêmes et par 1. \(2,3,5,7,11,13,17,...\)
    ComposéCe type de nombres a plus de 2 facteurs. \(4,6,8,9,10,12,14,...\)
    ParfaitNombres entiers qui résultent de la somme de leurs diviseurs propres. \N- (6\N) est un nombre parfait, car si tu additionnes les diviseurs de \N(6\N), qui sont \N(1\N), \N(2\N) et \N(3\N), tu obtiens \N(6\N) comme résultat. D'autres exemples incluent \N(28, 496, 8128, ...\N)
    FibonacciSérie de nombres entiers, dans laquelle chaque nombre résulte de l'addition des deux nombres précédents, en commençant par \(1\). \(1,1,2,3,5,8,13,...\)

    Séquence de nombres

    Lorsque tu vois une liste de nombres dans l'ordre et que tu peux identifier un modèle entre eux, tu as trouvé une suite de nombres.

    Une suite de nom bres est une liste de nombres dans l'ordre croissant ou décroissant qui suit un modèle ou une règle pour obtenir le nombre suivant (terme) dans la suite.

    Les suites de nombres peuvent être finies, si elles ont une fin, et infinies, si elles n'ont pas de fin.

    Voici quelques exemples qui t'aideront à reconnaître une suite de nombres.

    Détermine si les listes de nombres suivantes représentent une suite :

    a) 1, 3, 5, 7, 9, ...

    Oui, il s'agit d'une suite de nombres, car il s'agit d'une liste de nombres dans l'ordre croissant, et il existe un modèle cohérent pour trouver le terme suivant de la suite (ajouter 2).

    b) 4, 0, 3, 1, 7, ...

    Non, ce n'est pas une suite de nombres, car il s'agit d'une liste de nombres sans ordre précis.

    c) 2, 4, 6, 8, 0, ...

    Non, il ne s'agit pas d'une suite de nombres, car le motif n'est pas cohérent. Même si les2e,3e et4e termes sont obtenus en ajoutant 2 au terme précédent, le zéro (0) du5e terme rompt le modèle.

    Lis Séquences pour en savoir plus sur les différents types de suites de nombres.

    Systèmes de numération

    Les systèmes denumération sont des systèmes qui représentent les nombres à l'aide d'un ensemble spécifique de chiffres et de lettres.

    Le système de numération le plus courant, que nous utilisons régulièrement, est le système décimal, qui utilise les chiffres de 0 à 9. Dans le tableau ci-dessous, tu peux également voir d'autres types de systèmes de numération qui sont principalement utilisés par les ordinateurs.

    NomBaseChiffres/lettresExemple
    Décimale\(10\)\((0 - 9)\)\(15\)
    Binaire\(2\)\((0, 1)\)\N- 15 en binaire :\N((1111)_2\N)
    Octal\(8\)\((0 - 7)\)\N-(15\N) en octal :\N((17)_8\N)
    Hexadécimal\(16\)\N- (0 - 9, A - F)\N- (0 - 9, A - F)\N- (0 - 9, A - F)\N-(15\N) en hexadécimal :\N((F)_{16}\N)

    Le tableau ci-dessous te montre l'équivalence entre les différents systèmes de numération pour les nombres de 0 à 15 :

    DécimaleBinaireOctalHexadécimal
    0000000
    1000111
    2001022
    3001133
    4010044
    5010155
    6011066
    7011177
    81000108
    91001119
    10101012A
    11101113B
    12110014C
    13110115D
    14111016E
    15111117F

    Ceci n'est qu'une introduction aux différents types de systèmes de numération, tu peux aussi convertir des nombres entre les différents systèmes de numération et effectuer des opérations arithmétiques avec eux, mais cela dépasse le cadre de cet article.

    Les nombres - Principaux enseignements

    • Les nombres naturels, également appelés nombres à compter, sont tous les nombres commençant par \(1\).
    • Les nombres entiers sont tous les nombres naturels plus zéro.
    • Les nombres entiers comprennent tous les nombres entiers négatifs et positifs.
    • Les nombres rationnels peuvent être exprimés sous la forme d'une fraction de deux nombres entiers, alors que les nombres irrationnels ne le peuvent pas.
    • Les nombres réels comprennent tous les nombres rationnels et irrationnels.
    • Les nombres réels sont tous les nombres auxquels tu peux penser, à l'exception des nombres imaginaires.
    • La théorie des nombres est la branche des mathématiques qui étudie les nombres entiers positifs, leurs propriétés et leurs relations.
    • Une séquence de nombres est une liste de nombres dans l'ordre croissant ou décroissant qui suit un modèle ou une règle pour obtenir le nombre suivant (terme) dans la séquence.
    • Les quatre principaux types de systèmes de numération sont : décimal, binaire, octal et hexadécimal.
    Nombre Nombre
    Apprends avec 15 fiches de Nombre dans l'application gratuite StudySmarter

    Nous avons 14,000 fiches sur les paysages dynamiques.

    S'inscrire avec un e-mail

    Tu as déjà un compte ? Connecte-toi

    Questions fréquemment posées en Nombre
    Qu'est-ce qu'un nombre entier?
    Un nombre entier est un nombre sans partie fractionnaire. Par exemple, -3, 0, et 42 sont des nombres entiers.
    Comment définir un nombre premier?
    Un nombre premier est un nombre entier supérieur à 1 qui n'a que deux diviseurs: 1 et lui-même. Exemple: 2, 3, 5.
    Qu'est-ce qu'un nombre rationnel?
    Un nombre rationnel est un nombre qui peut être exprimé comme le quotient de deux entiers, où le dénominateur n'est pas zéro. Exemple: 1/2, 3/4.
    Quelle est la différence entre nombres pairs et impairs?
    Les nombres pairs sont divisibles par 2 (ex: 4, 6), tandis que les nombres impairs ne le sont pas (ex: 3, 7).

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 12 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    Obtiens un accès illimité avec un compte StudySmarter gratuit.

    • Accès instantané à des millions de pièces de contenu.
    • Fiches de révision, notes, examens blancs, IA et plus encore.
    • Tout ce dont tu as besoin pour réussir tes examens.
    Second Popup Banner