Qu'est-ce que l'intérêt simple ?
L'intérêta> simple est une façon de calculer l'intérêt sur une somme d'argent.
L'intérêt simple est généralement associé à l'emprunt ou à l'investissement d'argent. Il y a quelques termes avec lesquels tu dois te familiariser avant de continuer. Ces termes sont présentés ci-dessous.
- Principal - Le principal est le montant initial de l'argent qui a été investi ou emprunté. Il est désigné par .
- Taux - Le taux est le pourcentage de variation du montant du capital. Il est désigné par .
- Temps - Le temps est la période ou la durée au cours de laquelle l'argent doit être restitué. Il est désigné par .
- Montant - Le montant est la somme du capital et des intérêts simples. Le montant est le total de l'argent que tu recevras au cours d'une période donnée. Il est exprimé par .
Supposons que tu aies emprunté 200 livres sterling à un ami et que vous ayez tous deux convenu de rembourser l'argent au bout de 6 mois, à un taux de 1,5 %. Le montant principal est de 200 £, le taux est de 1,5 % et le temps est de 6 mois. L'intérêt simple après 6 mois sera le produit du principal, du taux, du temps et le montant total sera la somme du principal et de l'intérêt simple.
Formule de calcul de l'intérêt simple
Le calcul de l'intérêt simple se fait en trouvant le produit du montant du principal, du taux et du temps. La formule de calcul de l'intérêt simple est donc la suivante,
où est l'intérêt simple, est le principal, est le taux et est le temps.
Pour calculer le montant nous ajoutons le principal à l'intérêt simple et la formule pour calculer le montant est donc la suivante
.
Il existe d'autres équations d'intérêts simples qui peuvent être dérivées de la formule des intérêts simples. On peut te demander de trouver seulement le montant du principal, le taux ou le temps lorsque toutes les autres informations sont données.
Dans ce cas, tu devras substituer les valeurs données dans la formule et résoudre l'inconnue. Nous pouvons également dériver une formule pour le principal, le taux et le temps à partir de la formule des intérêts simples. Voyons comment.
Nous rappelons que la formule d'intérêt simple est
.
Si nous voulons dériver une formule pour nous ferons de le sujet de la formule en divisant les deux côtés par .
Par conséquent ,
Pour obtenir la formule de , nous suivrons la même procédure.
Divise les deux côtés par pour obtenir ,
Par conséquent,
Pour obtenir la formule de , nous procéderons de la même façon.
Divise les deux côtés par pour obtenir,
Par conséquent,
Tu n'as pas besoin de mémoriser toutes ces formules. Tu n'as qu'à te souvenir de la formule de l'intérêt simple et tu peux toujours substituer tes valeurs connues et résoudre pour obtenir l'inconnue.
La formule des intérêts simples s'écrit parfois comme suit,
Elle s'écrit ainsi parce que le taux est exprimé en pourcentage et pour passer des pourcentages aux décimales, tu dois diviser par 100.
Lorsque tu résous un problème en utilisant la formule sous cette forme, il te suffit d'introduire directement la valeur du taux, mais si tu utilises l'autre formule, tu dois d'abord diviser par 100.
Étapes du calcul des intérêts simples
Tu trouveras ci-dessous les étapes du calcul des intérêts simples.
- Énonce la formule des intérêts simples et identifie les paramètres donnés.
- Introduis ou substitue les valeurs données dans la formule.
- Résous l'inconnue.
Exemples d'intérêts simples
Prenons quelques exemples d'intérêts simples.
Trouve l'intérêt simple sur 5000 £ avec un pourcentage d'augmentation de 5 % sur 4 ans.
Solution
Pour trouver les intérêts simples, nous utiliserons la formule des intérêts simples ci-dessous.
D'après la question, nous avons
Nous allons maintenant substituer les valeurs que nous avons dans la formule,
.
Cela signifie que sur 4 ans, il y aura une augmentation de 1000 £.
Calcule les intérêts simples gagnés après 2 ans sur 5000 £ à un taux d'intérêt de 5 %.
Solution
Rappelle-toi que la formule de calcul des intérêts simples est la suivante
Dressons la liste des informations données,
Remplaçons les valeurs dans la formule de calcul de l'intérêt simple
.
Cela signifie que les intérêts à ajouter au capital après 2 ans sont de 500 £.Examinons maintenant des exemples où l'on nous demande de trouver le taux, le capital ou le montant.
Si l'intérêt simple sur 300 £ sur 2 ans est de 10 £, quel est le taux ?
Solution
Identifions d'abord ce que nous savons et ce que nous ignorons.
Nous savons que
Nous ne connaissons pas le taux du montant principal au bout de 5 mois.
Rappelle la formule des intérêts simples
Nous pouvons simplement continuer et utiliser la formule du taux dérivée plus tôt ou nous pouvons directement substituer dans la formule des intérêts simples. Substituons directement.
Divise les deux côtés par 600 pour obtenir ,
Ce n'est pas notre réponse finale parce que le taux que nous avons obtenu est une décimale. Le taux devrait être en pourcentage et pour l'obtenir en pourcentage, nous devrons le multiplier par 100.
.
Trouve le capital investi si 170 £ d'intérêts ont été gagnés en 2 ans à un taux d'intérêt de 4 %.
Solution
Dressons d'abord la liste de ce que nous savons et de ce que nous cherchons.
Nous cherchons le montant du capital. Nous pouvons substituer les valeurs que nous avons dans la formule de l'intérêt simple et résoudre pour ou nous pouvons utiliser la formule de dérivée plus tôt.
Nous utiliserons la formule dérivée plus haut.
Prenons un autre exemple de calcul du taux.
Trouve le taux si un capital de 8000 £ rapporte 3700 £ d'intérêts en 4 ans.
Solution
Comme d'habitude, nous allons énumérer ce que nous avons. Le fait d'énoncer ce que nous avons rend les choses plus claires.
Utilisons la formule du taux qui a été calculée plus tôt.
N'oublie pas que le taux est toujours exprimé en pourcentage. Nous devons donc le convertir en pourcentage en le multipliant par 100.
Le taux est donc de 11,56 %.
Trouve le montant et les intérêts simples gagnés sur 550 £ sur 3 ans à un taux d'intérêt de 2 %.
Solution
Indiquons ce que nous savons et ce que nous cherchons.
On nous demande de trouver le montant et les intérêts simples. Nous devons d'abord trouver les intérêts simples avant de trouver le montant.
Le montant est la somme de l'intérêt simple et du montant principal, donc
Différence entre l'intérêt simple et l'intérêt composé
Tout comme l'intérêt simple, il existe un autre type d'intérêt appelé intérêt composé. La principale différence entre l'intérêt simple et l'intérêt composé est qu'avec l'intérêt composé, le montant du principal augmente au fil du temps parce que des intérêts y sont continuellement ajoutés, alors qu'avec l'intérêt simple, le montant du principal n'augmente qu'une seule fois parce que les intérêts ne sont ajoutés qu'une seule fois. Pour en savoir plus sur les intérêts composés, consulte notre article sur les intérêts composés.
Intérêts simples - Points clés
- L'intérêtsimple est une façon de calculer l'intérêt sur une somme d'argent.
- La formule de l'intérêt simple est la suivante où est l'intérêt simple, est le capital, est le taux et est le temps.
- La formule de l'intérêt simple peut également être écrite sous la forme . Lorsque tu résous un problème en utilisant la formule sous cette forme, il te suffit d'introduire directement la valeur du taux, mais si tu utilises l'autre formule, tu dois d'abord diviser par 100.
- Le montant est la somme du capital et des intérêts simples, c' est le total de l'argent que tu recevras sur une période. Sa formule est donnée par .
- Le taux doit toujours être exprimé en pourcentage.
Apprends avec 0 fiches de Intérêt simple dans l'application gratuite StudySmarter
Nous avons 14,000 fiches sur les paysages dynamiques.
Tu as déjà un compte ? Connecte-toi
Questions fréquemment posées en Intérêt simple
À propos de StudySmarter
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.
En savoir plus