Les étapes d'une expérience de recherche
Pour savoir comment tirer des conclusions de nos données, nous devons garder à l'esprit un certain nombre de choses tout au long du processus. Tout d'abord, nous devons réfléchir à ce que nous attendons des données. Notre connaissance du sujet et des données elles-mêmes devrait nous aider à décider comment procéder à notre analyse. Ensuite, nous serons bien placés pour dire si notre analyse confirme ou infirme nos attentes initiales concernant les données .
L'hypothèse
La toute première chose que fait un chercheur (c'est-à-dire toi !) - avant l'expérience et certainement avant l'analyse des données expérimentales - est de formuler une hypothèse. Il s'agit d'une prédiction très spécifique sur ce que l'on peut attendre des données. Il est important d'établir l'hypothèse avant d'analyser les données, car elle déterminera la façon dont nous examinerons les données.
Souvent, l'hypothèse sera définie pour toi dans la question, mais il est toujours utile de la garder à l'esprit tout au long de l'analyse et de la conclusion.
Hypothèse: une prédiction spécifique sur le résultat d'une expérience qui sert de point de départ à la recherche. Elle est généralement prouvée ou réfutée à la fin de l'expérience.
Disons que nous voulions observer l'effet d'un temps ensoleillé sur les recettes d'un stand de limonade. Nous pourrions définir notre hypothèse comme suit : le revenu du stand de limonade est plus élevé lorsqu'il y a du soleil .
En faisant appel au bon sens, les gens sont plus susceptibles de vouloir acheter des boissons fraîches par temps ensoleillé, ce qui aura probablement une incidence sur les recettes. Sans plus d'informations sur la situation, nous ne pouvons pas nous appuyer sur autre chose.
L'expérience et l'analyse
Selon l'exemple, disons que nous avons recueilli les données suivantes :
Revenu, r (dollars) | Fréquence en cas de soleil | Fréquence lorsqu'il n'y a pas de soleil |
2 | 52 | |
3 | 49 | |
17 | 29 | |
29 | 27 | |
57 | 17 | |
62 | 8 | |
30 | 0 |
Comme les données sont groupées, nous pouvons représenter chacun des ensembles de données à l'aide d'un histogramme.
D'après les graphiques, nous pouvons voir que la classe de mode pour les données ensoleillées est la classe alors que pour le temps non ensoleillé, la classe de mode est .
Nous pouvons également trouver la moyenne comme mesure supplémentaire de la tendance centrale. Rappelle que pour trouver la moyenne à partir de données groupées, nous devons utiliser les points médians de chaque classe.
Revenu, x (dollars) | Fréquence lorsqu'il y a du soleil, | Fréquence lorsqu'il n'y a pas de soleil, | Point médian de la classe, m | m | m |
2 | 52 | 7.5 | 15 | 390 | |
3 | 49 | 22.5 | 67.5 | 1,102.5 | |
17 | 29 | 35 | 595 | 1,015 | |
29 | 27 | 45 | 1,305 | 1,215 | |
57 | 17 | 55 | 3,135 | 935 | |
62 | 8 | 65 | 4,030 | 520 | |
30 | 0 | 80 | 2,400 | 0 |
Nous pouvons maintenant trouver la moyenne pour les revenus des "journées ensoleillées" :
à 2 d.p.
Et maintenant, trouve la moyenne pour les revenus des "jours non ensoleillés" :
à 2 d.p.
La conclusion
Nous avons donc recueilli et analysé les données. Il ne reste plus qu'à comparer nos statistiques avec l'hypothèse que nous avons émise au préalable.
Rappel : les recettes du stand de limonade sont plus élevées lorsque le soleil est au rendez-vous.
Nous comparons maintenant notre hypothèse de départ avec les statistiques que nous avons trouvées. Nous pouvons constater que le montant moyen des recettes lors d'une journée ensoleillée est de 59,95 $, tandis que le montant moyen des recettes lors d'une journée non ensoleillée est de 18,24 $. Puisque les recettes des jours ensoleillés sont tellement plus élevées qu'autrement, nous pouvons conclure que les données que nous avons recueillies confirment notre hypothèse et que, d'après les données, les recettes du stand de limonade sont plus élevées lorsque le soleil est au rendez-vous.
Ce processus - tirer une conclusion sur une population à partir des résultats recueillis sur un échantillon - s'appelle l'inférence statistique.
Mais attention ! Il est important de faire attention au langage que nous utilisons dans nos hypothèses. Prends par exemple l'affirmation suivante : "un temps ensoleillé rend les gens plus enclins à acheter de la limonade". Bien que cela puisse être vrai, nous n'en savons pas assez sur les données elles-mêmes pour confirmer que c'est spécifiquement le temps qu'il fait qui a incité plus de gens à acheter de la limonade. Il se pourrait plutôt que le temps ait augmenté le nombre de clients potentiels à proximité du stand de limonade.
Nous pouvons également utiliser d'autres statistiques pour compléter notre conclusion. Nous pouvons voir que la fourchette des revenus des "jours ensoleillés" est de 90 alors que la fourchette des "jours non ensoleillés" est de 70. Par conséquent, nous pouvons également ajouter à notre conclusion que, bien qu'il y ait en moyenne un plus grand montant de revenus les jours ensoleillés, il y a également un plus grand écart dans les revenus.
Ta conclusion doit toujours se référer spécifiquement à ce que les données nous montrent !
Tirer des conclusions à partir d'exemples - Principaux enseignements
- L' hypothèse est une prédiction spécifique sur le résultat d'une expérience qui sert de point de départ à la recherche. Elle est généralement prouvée ou réfutée à la fin de l'expérience
- Pour tirer des conclusions, nous devons d'abord collecter les données pertinentes et effectuer des analyses statistiques telles que la création de visualisations des données (par exemple un histogramme) et la recherche de statistiques pertinentes (par exemple la moyenne).
- Dans la conclusion, compare l'analyse statistique avec ton hypothèse de départ.
- Le processus qui consiste à tirer une conclusion sur une population à partir des résultats recueillis sur un échantillon s'appelle l'inférence statistique
- Fais attention dans ta conclusion à ne faire référence qu'à ce que les statistiques nous disent spécifiquement sur les données.
Apprends avec 5 fiches de Tirer des conclusions à partir d'exemples dans l'application gratuite StudySmarter
Nous avons 14,000 fiches sur les paysages dynamiques.
Tu as déjà un compte ? Connecte-toi
Questions fréquemment posées en Tirer des conclusions à partir d'exemples
À propos de StudySmarter
StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.
En savoir plus