Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Ecart-type

  • Temps de lecture: 6 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières
Table des mateères

    Jump to a key chapter

      L'écart-type est une mesure de dispersion, et il est utilisé en statistique pour déterminer à quel point les valeurs sont éloignées de la moyenne dans un ensemble de données.

      Formule de l'écart-type

      La formule de l'écart-type est la suivante :

      \[ \sigma = \sqrt{\dfrac{\sum(x_i-\mu)^2}{N}}\]

      Où :

      \(\sigma\) est l'écart type

      \(\sum\) est la somme

      \(x_i\) est un nombre individuel dans l'ensemble de données

      \N( \Nmu\N) est la moyenne de l'ensemble des données

      \N(N\N) est le nombre total de valeurs dans l'ensemble de données

      En d'autres termes, l'écart type est la racine carrée de la somme de la distance entre chaque point de données et la moyenne au carré, divisée par le nombre total de points de données.

      La variance d'un ensemble de données est égale à l'écart-type au carré, \(\sigma^2\).

      Graphique de l'écart type

      Le concept d'écart type est assez utile car il nous aide à prédire combien de valeurs d'un ensemble de données se trouveront à une certaine distance de la moyenne. Lorsque nous effectuons un écart type, nous supposons que les valeurs de notre ensemble de données suivent une distribution normale. Cela signifie qu'elles sont réparties autour de la moyenne selon une courbe en forme de cloche, comme ci-dessous.

       probabilité écart type graphique studysmarterGraphique de l'écart-type. Image : M W Toews, CC BY-2.5 i

      L'axe \(x\) représente les écarts types autour de la moyenne, qui dans ce cas est \(0\). L'axe \(y\) indique la densité de probabilité, c'est-à-dire le nombre de valeurs de l'ensemble des données qui se situent entre les écarts types de la moyenne. Ce graphique nous indique donc que \N(68,2\N%) des points d'un ensemble de données normalement distribuées se situent entre \N(-1\N) d'écart type et \N(+1\N%) d'écart type de la moyenne, \N(\Nmu\N).

      Comment calculer l'écart-type ?

      Dans cette section, nous allons voir un exemple de calcul de l'écart type d'un échantillon de données. Disons que tu as mesuré la taille de tes camarades de classe en cm et que tu as enregistré les résultats. Voici tes données :

      165, 187, 172, 166, 178, 175, 185, 163, 176, 183, 186, 179

      À partir de ces données, nous pouvons déjà déterminer \(N\), le nombre de points de données. Dans ce cas, \(N = 12\). Nous devons maintenant calculer la moyenne, \(\mu\). Pour cela, il suffit d'additionner toutes les valeurs et de les diviser par le nombre total de points de données, \N(N\N).

      \[ \begin{align} \mu &= \frac{165 + 187+172+166+178+175+185+163+176+183+186+179}{12} \\ &= 176.25. \Nend{align} \]

      Il nous faut maintenant trouver

      \N[ \Nsomme(x_i-\Nmu)^2.\N]

      Pour cela, nous pouvons construire un tableau :

      \N-(x_i\N)

      \N- (x_i - \Nmu)

      \N- (x_i-\mu)^2\N)

      165

      -11.25

      126.5625

      187

      10.75

      115.5625

      172

      -4.25

      18.0625

      166

      -10.25

      105.0625

      178

      1.75

      3.0625

      175

      -1.25

      1.5625

      185

      8.75

      76.5625

      163

      -13.25

      175.5625

      176

      -0.25

      0.0625

      183

      6.75

      45.5625

      186

      9.75

      95.0625

      179

      2.75

      7.5625

      Pour l'équation de l'écart type, nous avons besoin de la somme en ajoutant toutes les valeurs de la dernière colonne. Cela donne \(770.25\).

      \N- \NSomme(x_i-\Nmu)^2 = 770,25.\N]

      Nous avons maintenant toutes les valeurs dont nous avons besoin pour les insérer dans l'équation et obtenir l'écart-type pour cet ensemble de données.

      \[ \begin{align} \sigma &= \sqrt{\dfrac{\sum(x_i-\mu)^2}{N}} \N- &= \sqrt{\frac{770.25}{12}} \\ &= 8.012. \N- [end{align}\N]

      Cela signifie qu'en moyenne, les valeurs de l'ensemble des données s'éloignent de la moyenne de 8,012 cm. Comme le montre le graphique de la distribution normale ci-dessus, nous savons que \N(68,2\N%) des points de données se situent entre \N(-1\N) d'écart type et \N(+1\N%) d'écart type par rapport à la moyenne. Dans ce cas, la moyenne est de 176,25 cm et l'écart type de 8,012 cm. Par conséquent, \N( \mu - \sigma = 168,24\N, cm\N) et \N( \mu - \sigma = 184,26\N, cm\N), ce qui signifie que \N (68,2\N% ) des valeurs sont comprises entre \N(168,24\N, cm\N) et \N(184,26\N, cm\N).

      L'âge de cinq travailleurs (en années) dans un bureau a été enregistré. Trouve l'écart-type des âges : 44, 35, 27, 56, 52.

      Nous avons 5 points de données, donc \(N=5\). Nous pouvons maintenant trouver la moyenne, \(\mu\).

      \N[ \Nmu = \Nfrac{44+35+27+56+52}{5} = 42.8\N]

      Nous devons maintenant trouver

      \[ \sum(x_i-\mu)^2.\]

      Pour cela, nous pouvons construire un tableau comme ci-dessus.

      \N-(x_i\N)\N- (x_i - \Nmu)

      \N- (x_i-\mu)^2\N- (x_i-\mu)^2\N- (x_i-\mu)^2\N)

      441.21.44
      35-7.860.84
      27-15.8249.64
      5613.2174.24
      529.284.64

      Pour trouver

      \N[ \Nsomme(x_i-\Nmu)^2,\N]

      il suffit d'additionner tous les nombres de la dernière colonne. Cela donne

      \[ \sum(x_i-\mu)^2 = 570.8\]

      Nous pouvons maintenant insérer le tout dans l'équation de l'écart type.

      \[ \begin{align} \sigma &= \sqrt{\dfrac{\sum(x_i-\mu)^2}{N}} \N- &= \sqrt{\frac{570.8}{5}} \\ &= 10.68. \N- [Fin{alignement}\N]

      L'écart-type est donc de \(10,68\) ans.

      Écart-type - Principaux enseignements

      • L'écart type est une mesure de la dispersion, c'est-à-dire de la distance entre les valeurs d'un ensemble de données et la moyenne.
      • Le symbole de l'écart type est sigma, \(\sigma\).
      • L'équation de l'écart type est \[ \sigma = \sqrt{\dfrac{\sum(x_i-\mu)^2}{N} \].
      • La variance est égale à \(\sigma^2\)
      • L'écart-type est utilisé pour les ensembles de données qui suivent une distribution normale.
      • Le graphique d'une distribution normale est en forme de cloche.
      • Dans un ensemble de données qui suit une distribution normale, \N(68,2\N%) des valeurs sont comprises dans \N(\Npm \Nsigma\N) la moyenne.


      Images

      Graphique de l'écart-type : https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg

      Questions fréquemment posées en Ecart-type
      Qu'est-ce que l'écart-type?
      L'écart-type est une mesure de la dispersion des données. Il indique à quel point les valeurs d'un ensemble sont éloignées de la moyenne.
      Comment est calculé l'écart-type?
      Pour calculer l'écart-type, on trouve la moyenne, on calcule les carrés des écarts à la moyenne, on fait la moyenne de ces carrés et on prend la racine carrée.
      Pourquoi utiliser l'écart-type?
      L'écart-type est utilisé pour comprendre la variabilité des données et comparer la dispersion entre différents ensembles de données.
      Quelle est la différence entre écart-type et variance?
      L'écart-type est la racine carrée de la variance. La variance mesure la dispersion au carré, tandis que l'écart-type mesure la dispersion réelle.
      Sauvegarder l'explication

      Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

      Lance-toi dans tes études
      1
      À propos de StudySmarter

      StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

      En savoir plus
      Équipe éditoriale StudySmarter

      Équipe enseignants Mathématiques

      • Temps de lecture: 6 minutes
      • Vérifié par l'équipe éditoriale StudySmarter
      Sauvegarder l'explication Sauvegarder l'explication

      Sauvegarder l'explication

      Inscris-toi gratuitement

      Inscris-toi gratuitement et commence à réviser !

      Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

      La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

      • Fiches & Quiz
      • Assistant virtuel basé sur l’IA
      • Planificateur d'étude
      • Examens blancs
      • Prise de notes intelligente
      Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !