La règle du produit des probabilités

Tout comme nous avons différentes propriétés multiplicatives et d'addition pour les nombres réels, il en va de même pour les probabilités d'événements .

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants La règle du produit des probabilités

  • Temps de lecture: 15 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Lorsqu'il s'agit d'un seul événement, nous n'avons pas besoin de rechercher des propriétés spécifiques pour modéliser la propriété de l'événement. Mais si nous avons deux événements ou plus, il devient vraiment difficile de modéliser les propriétés de ces événements, et surtout de les mettre en relation. C'est pourquoi il existe des règles de probabilité qui permettent de relier différents événements en examinant leurs propriétés.

    Dans de tels cas, nous devons relier ces événements ainsi que leurs intersections et leurs unions. Explorons davantage ces propriétés, en commençant par la règle d'addition des probabilités.

    La règle d'addition

    Considère deux événements A et B, tels qu'ils font partie de l'espace d'échantillonnage S. Soit PA{"x":[[255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,256,258,260,263,266,270],[249,243,243,293,305,315,322,327,330,331,332,332,331,327,320,311,301,290,278,266,255,249,244,242],[443,435,428,419,408,397,387,378,369,361,356,354,353,353,353,356,361,367,375,384,394,404,415],[501,496,493,488,482,477,474,471,469,467,465,464,463,463,463,463,463,463,465,467,470,473,477,481,486,489,493,496,498,498,499,500,500,500,502,504,505,507,508,509,510,510,510,511,511,512,512,513,514,515,516,517,520,521],[464,468,475,484,493,502,511,517,522,527,529],[552,560,566,574,580,585,589,590,590,590,590,587,583,579,573,568,564,560,556,553,551]],"y":[[168,172,179,188,201,216,233,253,271,289,310,332,355,377,397,415,430,440,448,453,456,456],[205,197,192,156,152,151,151,152,155,159,164,169,175,183,193,203,214,226,236,245,252,257,259,260],[171,174,177,185,195,207,220,233,247,262,275,288,300,312,322,332,339,345,349,351,351,351,348],[214,218,225,235,247,258,269,279,288,296,303,307,310,311,310,307,303,294,282,272,261,248,236,225,216,210,205,202,201,200,200,200,202,205,209,216,224,234,246,259,272,285,296,305,315,322,329,334,338,341,342,343,344,344],[273,277,277,275,274,273,272,272,271,271,271],[186,189,193,201,211,222,234,248,262,277,291,306,321,336,351,366,379,391,401,409,415]],"t":[[0,8,17,21,32,39,48,56,65,73,82,89,98,106,115,123,132,140,149,156,165,171],[419,448,465,505,515,522,532,538,548,556,565,573,581,590,598,606,615,623,631,639,648,656,665,672],[1035,1055,1065,1075,1082,1090,1098,1107,1117,1122,1134,1139,1152,1156,1165,1173,1186,1189,1200,1211,1215,1223,1231],[1453,1464,1472,1482,1490,1503,1508,1515,1523,1533,1540,1553,1555,1567,1606,1614,1622,1634,1639,1651,1656,1667,1674,1683,1690,1703,1706,1715,1723,1734,1740,1757,1765,1772,1785,1789,1801,1806,1817,1822,1833,1840,1849,1856,1865,1873,1884,1889,1901,1907,1915,1922,1939,1947],[2151,2164,2174,2182,2190,2204,2207,2218,2223,2234,2239],[2461,2489,2499,2514,2523,2532,2533,2540,2549,2557,2569,2573,2585,2590,2599,2606,2615,2624,2635,2639,2649]],"version":"2.0.0"} etPB les probabilités des événements A et B, respectivement.

    La loi d'addition des probabilités , également appelée règle de l'addition ou règle de la somme, stipule que la probabilité que les deux événements se produisent, c'est-à-dire l'union de A et de B, est donnée par la formule suivante

    PAB=PA+PB-P(AB)

    PAB représente la probabilité d'occurrence de A ou B, et P(AB) désigne la probabilité d'occurrence de A et B.

    Nous supposons que A et B sont des événements non vides et que leur intersection n'est pas l'ensemble vide.

    Pour comprendre comment la formule ci-dessus est dérivée, visualisons les ensembles A et B comme faisant partie d'un diagramme de Venn.

    Nous rappelons que les diagrammes de Venn sont des diagrammes où les ensembles et l'espace échantillon sont représentés sous forme de figures géométriques afin de mieux comprendre leurs unions, leurs compléments et leurs intersections.

    Considère le diagramme de Venn ci-dessous.

    Règles de probabilité, Le diagramme de Venn de deux événements A et B, StudySmarter Le diagramme de Venn de deux événements A et B, StudySmarter Originals

    Dans le diagramme ci-dessus, le rectangle vert représente l'espace d'échantillonnage, et les deux cercles bleus représentent respectivement les événements A et B.

    Si nous voulons trouver la probabilité de l'événement "A ou B", ce sera leur union, et nous pouvons utiliser le diagramme de Venn pour voir comment y parvenir.

    Si nous additionnons les probabilités de A et B, leur intersection sera comptée deux fois au lieu d'une. Par conséquent, nous devons soustraire leur intersection. Cela nous donne :

    PAB=PA+PB-PAB

    Pour tout événement, le mot "et" implique leur "intersection" et le mot "ou" implique leur "union

    La règle de l'addition peut également être étendue à trois événements, à savoir A, B et C,

    PABC=PA+PB+PC-PAB-P(AC)-P(BC)+P(ABC)

    où la même idée des diagrammes de Venn peut être considérée pour dériver la formule.

    Étant donné deux événements X et Y dont les probabilités d'occurrence sont respectivement de 0,3 et 0,4. La probabilité d'occurrence de X et Y est de 0,1, trouve la probabilité que X ou Y se produise.

    Solution

    Les probabilités de X et Y sont données par PX=0.3{"x":[[68,67,67,68,68,68,68,68,68,67,67,67,66,65,65,65,64,64,64,64,64,64,64,65],[61,61,61,62,63,64,69,75,81,87,92,96,98,100,101,102,103,104,103,102,99,97,89,87,79,76,70,70,69],[183,181,179,177,176,172,168,163,160,150,147,139,137,132,131,131,133,134,138,140,145,151,157,165,172,180,188],[235,235,233,233,235,236,240,241,247,249,255,260,265,267,274,277,279,281,287,289,295,298],[301,298,296,294,292,289,284,282,275,270,264,259,257,251,250,247,246,245,245,245],[341,342,343,346,348,350,352,358,361,368,370,373,376,376,376,376,376,375,374,372,370,365,363,357,355,351],[429,430,431,434,436,439,444,447,452,456,461,463,467,469,470],[428,429,431,433,441,447,455,462,466,475,477],[535,535,535,534,530,529,526,525,524,524,525,525,527,533,535,540,543,546,551,556,561,563,567,570,572,573,573,572,570,568,563,561,559,556,554,552,551],[617,619,620,621],[688,688,689,690,691,692,696,699,702,706,710,715,717,722,722,724,724,723,722,720,717,715,712,711,710,709,709,709,710,713,715,721,724,730,732,736,738,738,738,738,736,734,732,728,723,718,708,703,697,691,685,682,680]],"y":[[181,181,186,193,204,210,229,235,242,256,263,277,297,303,314,320,330,334,345,348,354,355,357,356],[185,181,179,177,176,174,171,168,166,166,168,172,175,181,184,187,194,201,208,212,220,224,235,238,248,250,255,256,256],[181,179,178,178,178,180,183,187,190,203,208,226,232,252,266,279,290,294,301,305,310,314,316,318,318,317,315],[191,189,186,185,185,186,192,194,204,208,221,230,238,242,250,253,256,258,264,265,269,270],[184,184,185,189,192,200,210,216,232,243,254,264,269,282,286,294,297,302,303,304],[173,171,170,171,172,174,176,182,185,198,202,211,226,231,241,247,252,262,268,279,283,296,300,310,312,317],[224,223,223,223,223,223,223,223,223,223,224,224,225,226,226],[264,264,264,264,264,262,260,257,256,252,251],[207,208,210,213,223,227,240,245,257,261,273,276,282,287,288,288,288,287,285,281,276,273,267,260,252,249,239,232,226,224,219,218,217,216,215,215,215],[228,228,228,228],[201,194,190,188,187,186,182,180,178,176,175,175,175,177,178,184,186,192,196,201,205,207,211,213,215,218,219,221,223,224,225,227,228,232,234,239,243,247,249,254,259,261,264,269,273,277,281,281,281,281,279,277,275]],"t":[[0,8,24,31,41,48,58,64,65,73,81,91,98,108,114,115,124,132,141,148,160,164,174,189],[464,469,471,473,481,483,491,498,506,515,524,531,543,548,549,556,565,574,581,582,591,598,608,615,624,631,641,648,648],[992,1006,1010,1015,1015,1024,1031,1041,1048,1058,1065,1074,1081,1094,1098,1108,1115,1127,1131,1132,1141,1148,1159,1165,1179,1185,1191],[1449,1467,1470,1473,1491,1498,1508,1515,1525,1532,1545,1549,1557,1565,1575,1582,1582,1590,1598,1608,1615,1625],[1859,1874,1877,1878,1882,1891,1898,1908,1915,1925,1932,1942,1948,1962,1966,1975,1982,1994,1998,1999],[2250,2266,2269,2270,2274,2282,2283,2292,2299,2308,2315,2325,2332,2344,2349,2349,2362,2365,2366,2379,2382,2394,2399,2411,2415,2428],[2776,2790,2793,2795,2799,2809,2815,2816,2826,2833,2842,2849,2859,2865,2870],[3068,3083,3086,3091,3099,3109,3116,3125,3133,3142,3149],[3408,3424,3427,3428,3441,3449,3459,3466,3475,3482,3492,3499,3509,3516,3525,3532,3533,3541,3552,3561,3566,3566,3576,3583,3592,3599,3609,3616,3626,3632,3642,3649,3649,3659,3666,3666,3676],[3850,3858,3866,3874],[4254,4271,4274,4283,4283,4291,4299,4309,4316,4326,4333,4343,4349,4362,4366,4378,4383,4392,4399,4408,4416,4427,4433,4433,4441,4450,4450,4459,4467,4476,4483,4493,4499,4510,4517,4526,4533,4543,4552,4562,4566,4567,4576,4583,4593,4599,4609,4617,4626,4634,4643,4650,4654]],"version":"2.0.0"} et PY=0.4{"x":[[116,115,114,114,114,115,116,117,117,119,119,120,121,121,121,122,122,122,122,122,122,122,122,122,123],[100,98,95,94,94,99,101,109,113,119,122,128,134,139,141,146,147,148,148,145,141,135,133,128,124,123,121,119,118],[232,229,227,223,220,218,212,202,199,190,188,182,181,180,178,179,181,184,186,191,198,205,209,213,222,227],[268,270,273,275,280,283,286,292,294,299,301,302,306,308,310,315,317,321,325,330,334,336,340,344,347,350,353,355,358,359,360,360,359,358,357,355,352,349,345,343,339,337,335,330,329,325,322,321,320,319,319,319,319,321,322,323],[398,399,403,405,408,411,418,420,425,425,425,424,420,418,414,409,407,404,398,396,392,391,390],[494,493,492,491,491,493,494,500,503,511,514,517,524,527,529,532,537,541,544,545],[488,490,491,494,501,504,517,521,532,534,537,541],[648,646,643,641,639,637,636,634,633,633,634,638,640,647,652,659,662,666,669,677,684,693,695,700,705,706,706,706,704,703,701,694,692,683,681,678,672,669,665,663],[765],[841,841,841,840,839,837,836,833,832,830,827,823,819,816,815,817,818,821,825,831,833,836,841,846,852,858,860,866,872,876,881],[855,855,856,856,856,856,856,855,853,850,848,845,843,841,839,839,839,840]],"y":[[159,158,157,156,157,161,168,177,183,206,214,239,247,257,272,286,300,305,310,315,324,329,332,339,342],[187,183,179,174,170,164,162,156,155,154,154,155,158,162,164,172,175,185,193,202,211,219,223,229,234,235,236,238,238],[162,160,159,160,161,163,169,183,188,207,213,234,241,249,264,279,293,306,311,319,326,330,331,331,331,330],[170,171,174,176,184,187,191,202,206,213,216,218,221,222,223,223,223,222,220,215,210,208,201,194,188,181,173,170,161,159,154,153,153,153,153,155,160,166,175,179,188,193,199,213,220,233,246,255,259,271,273,281,283,288,289,289],[145,145,147,149,152,156,166,172,190,197,214,220,239,245,258,271,276,281,295,299,307,310,310],[191,191,190,190,189,189,189,189,189,189,189,189,188,188,188,188,188,188,189,189],[236,236,236,236,235,234,231,230,226,225,224,222],[174,180,186,196,202,213,218,234,239,253,257,267,270,275,276,276,275,274,273,268,263,251,247,238,224,214,204,200,192,189,186,179,177,175,175,175,176,177,178,180],[228],[146,148,150,154,161,168,172,179,182,186,192,200,208,216,221,223,224,225,226,227,227,227,227,226,225,224,223,222,221,220,218],[191,192,192,193,194,197,200,203,210,218,221,229,233,240,247,250,256,264]],"t":[[0,4,9,10,22,32,39,49,55,65,72,82,88,89,99,105,113,122,122,132,138,139,149,158,163],[394,402,416,422,432,439,449,455,466,472,472,482,489,499,506,515,522,532,538,548,555,565,572,580,589,589,598,605,606],[882,897,900,901,905,915,922,932,939,948,955,965,972,972,982,989,1000,1005,1016,1022,1034,1039,1039,1052,1055,1056],[1367,1367,1370,1373,1380,1381,1389,1399,1406,1415,1422,1423,1432,1439,1439,1449,1455,1465,1472,1482,1489,1489,1499,1506,1518,1522,1532,1539,1549,1557,1565,1572,1584,1589,1589,1602,1606,1619,1622,1634,1639,1639,1650,1655,1656,1668,1672,1682,1689,1699,1706,1715,1724,1734,1739,1748],[1961,1979,1982,1983,1989,1991,1999,2006,2016,2023,2032,2039,2049,2056,2065,2072,2073,2083,2089,2101,2106,2115,2123],[2395,2402,2407,2416,2439,2449,2456,2466,2472,2482,2489,2489,2499,2506,2506,2515,2523,2532,2539,2540],[2726,2748,2756,2759,2766,2773,2783,2789,2799,2806,2806,2816],[3133,3149,3152,3153,3157,3166,3174,3183,3189,3199,3206,3216,3224,3233,3239,3249,3256,3257,3267,3273,3283,3290,3300,3306,3320,3323,3334,3340,3349,3352,3359,3369,3373,3383,3389,3390,3400,3406,3407,3416],[3659],[3970,3986,3990,3991,3999,4006,4017,4023,4023,4033,4040,4050,4057,4069,4073,4086,4090,4100,4107,4118,4123,4124,4132,4140,4150,4157,4167,4173,4183,4190,4200],[4404,4409,4416,4423,4424,4434,4440,4440,4448,4457,4467,4473,4474,4484,4491,4500,4507,4517]],"version":"2.0.0"}.

    La probabilité que les deux se produisent est PXY=0.1{"x":[[142,142,142,142,142,142,143,143,144,144,145,146,146,148,148,149,150,151,151,152,153,153,154,155,155,155,155,155],[138,136,135,135,136,138,140,149,152,164,168,178,181,189,191,193,196,197,199,198,197,193,191,189,184,179,176,169,167,163],[283,273,269,266,264,258,255,249,247,245,243,242,242,242,243,244,246,247,252,256,262,269,272,282,286,298,301,305],[325,325,325,326,329,339,347,357,360,368,371,375,381,384,389,395,399,403,407,408,412,413],[399,398,397,396,394,393,392,388,385,382,375,363,359,349,346,340,339,337,335,334,335],[446,445,444,443,443,443,443,445,446,448,449,452,457,460,463,469,475,480,482,486,490,492,494,498,499,503,504,505,507,507,508,508,508,508,509,509,510,510,511,512],[542,543,544,549,551,553,556,558,559,561,562,563,566,568,570,574,576,578,580,582,583,587,588,590,591,591,592,592,592,591,591,591,591,591,591,591,590,590,589,588,587,585,585,584,584,583,583,583,583,583,583,583,584,584,585,586],[631,633,634,635,637,639,644,646,653,655,660,661,663,663,663,662,660,658,656,651,646,644,640,636,635,635],[734,736,738,740,744,747,750,756,765,771,776,779,786,787,792,793,793],[729,729,731,732,734,736,741,747,759,767,775,783,786,795,798,805,807,808,810],[878,877,877,877,875,875,873,871,870,870,870,870,871,872,874,877,880,884,887,892,897,900,903,909,912,915,924,930,935,940,942,944,944,944,943,940,939,937,928,921,914,911,900,897,894,892,888,885,884],[997,996,995,995],[1048,1048,1048,1048,1048,1048,1048,1048,1048,1047,1047,1047,1047,1047,1048,1049,1050,1052,1053,1053]],"y":[[166,167,170,174,177,186,198,210,224,232,254,262,270,287,295,302,316,323,329,334,344,349,353,363,368,371,372,371],[187,185,183,180,178,176,173,165,163,156,156,157,158,165,168,172,179,182,193,201,205,218,223,227,234,242,245,253,255,258],[161,167,173,177,183,196,203,225,232,241,256,264,272,279,291,296,301,306,315,320,326,329,330,330,329,324,321,318],[194,195,197,199,203,214,223,232,235,241,244,247,252,255,261,267,273,278,282,284,286,286],[185,185,184,184,184,185,186,190,194,198,210,230,236,255,260,273,276,281,287,290,291],[272,271,270,267,266,258,255,244,235,225,220,210,200,195,190,183,178,176,176,177,181,186,189,198,201,210,213,216,223,227,231,240,244,252,260,265,270,272,272,272],[170,171,173,182,186,190,199,207,210,214,216,218,220,221,221,220,218,214,209,203,199,188,184,174,171,169,166,165,164,164,165,167,168,173,180,188,193,204,215,228,234,252,257,273,276,286,288,290,293,294,295,294,293,289,287,285],[135,134,134,134,135,137,141,145,161,166,185,192,209,222,234,247,260,266,272,285,298,303,312,321,323,322],[196,196,196,196,195,195,195,195,195,195,195,195,195,195,196,196,197],[231,232,232,232,232,232,231,230,228,226,225,225,224,224,224,224,224,224,223],[184,184,186,187,192,196,206,217,228,237,246,250,261,264,267,272,276,278,279,280,280,279,278,275,273,270,261,253,245,235,226,218,214,205,202,197,195,194,190,188,188,188,189,190,190,190,191,191,192],[233,235,236,237],[180,189,198,204,210,216,229,235,242,253,265,270,281,289,296,304,308,311,312,313]],"t":[[0,6,11,12,13,22,31,38,48,54,64,71,71,81,87,88,98,104,104,114,121,121,131,138,148,154,164,179],[583,599,602,609,613,613,623,631,638,647,655,663,671,681,688,688,696,704,714,721,731,738,747,749,754,764,772,781,788,797],[1222,1242,1247,1255,1258,1263,1271,1281,1288,1288,1298,1305,1305,1314,1321,1322,1330,1334,1338,1347,1356,1366,1372,1382,1388,1399,1405,1410],[3792,3795,3799,3806,3814,3822,3832,3839,3849,3856,3856,3865,3872,3873,3882,3889,3899,3907,3915,3923,3935,3951],[4135,4141,4144,4148,4156,4156,4166,4172,4173,4181,4189,4199,4206,4217,4222,4232,4239,4250,4256,4266,4272],[4662,4669,4673,4682,4690,4699,4706,4716,4723,4732,4739,4749,4756,4756,4766,4773,4782,4789,4790,4799,4806,4816,4823,4832,4840,4849,4856,4856,4866,4873,4873,4883,4889,4899,4906,4916,4923,4933,4940,4956],[5267,5284,5291,5299,5306,5306,5316,5323,5333,5340,5343,5350,5356,5367,5373,5384,5390,5402,5406,5416,5423,5432,5441,5451,5456,5456,5466,5473,5473,5498,5506,5507,5516,5523,5535,5539,5540,5551,5556,5569,5573,5586,5590,5599,5610,5619,5623,5623,5633,5640,5649,5656,5666,5673,5674,5681],[5953,5963,5967,5968,5973,5975,5983,5990,6000,6007,6018,6024,6032,6040,6048,6056,6066,6073,6073,6086,6090,6100,6106,6116,6124,6133],[6662,6669,6675,6684,6690,6690,6700,6707,6717,6724,6733,6741,6750,6757,6767,6782,6782],[7234,7243,7265,7274,7274,7284,7290,7305,7308,7317,7324,7333,7340,7350,7357,7367,7373,7374,7384],[8443,8466,8474,8484,8491,8491,8501,8509,8517,8524,8534,8541,8551,8559,8562,8569,8574,8584,8591,8600,8607,8608,8618,8624,8625,8633,8641,8651,8658,8667,8674,8684,8692,8701,8708,8716,8716,8724,8734,8741,8751,8757,8768,8774,8775,8785,8791,8801,8807],[9061,9065,9074,9091],[9467,9483,9486,9487,9491,9494,9502,9508,9508,9518,9525,9535,9541,9552,9558,9568,9575,9584,9592,9601]],"version":"2.0.0"}.

    On nous demande de trouver la probabilité de X ou de Y qui n'est rien d'autre que la probabilité de leur unionPXY.

    Nous pouvons donc utiliser la règle de l'addition pour la trouver,

    PXY=PX+PY-PXY

    En substituant les valeurs appropriées, nous obtenons

    PXY=0.3+0.4-0.1=0.6

    La probabilité que l'événement X ou Y se produise est donc de 0,6.

    Règle d'addition pour les événements disjoints

    Il peut arriver que deux événements n'aient rien à voir l'un avec l'autre lorsque leur intersection est un ensemble nul.

    Deux événements, A et B, sont appelés événements disjoints si leur intersection est un ensemble nul, c'est-à-dire

    AB=O

    Maintenant, pour trouver la probabilité de l'union de deux événements disjoints, nous utilisons la règle de l'addition.

    PAB=PA+PB-PAB{"x":[[24,24,24,24,24,24,25,25,25,25,25,25,24,24,24,24,24,24,24,24,25,25,26,27],[23,22,21,20,19,18,18,22,26,32,37,39,47,49,55,56,60,61,61,60,58,55,53,51,45,43,40,38],[92,91,90,88,86,83,82,78,76,75,75,76,77,78,79,82,86,89,93,95,97,99],[108,108,108,109,110,110,112,113,114,115,117,118,120,123,126,128,130,133,135,138,139,141,142,144,145,145,145,145,145,145,144,143,143,142,142,142,142],[116,114,113,114,115,116,118,124,126,133,136,138],[183,182,182,182,181,181,181,180,180,180,181,183,185,187,189,192,193,195,199,202,205,207,211,215,216,219,220,221,221,221,222,222,222,222],[249,248,248,248,248,248,248,248,247,246,245,244,243,243,243,243],[248,248,247,247,248,250,253,257,258,264,266,271,272,274,275,275,275,275,275,274,273,272,269,265,262,260,259,258,258,260,261,265,267,271,272,274,276,278,278,278,278,278,277,276,272,269,267,260,258,251,249,245],[294,295,299,300,302,307,310,314,315,316,316,317,316,315,313,309,305,301,298,296,293,292,291,291],[349,350,351,353,356,361,367,370,378,380,386,387,389,389,390],[341,340,341,343,344,350,353,360,363,369,371,373,376,379],[426,425,425,424,423,423,422,422,422,422,422,422,422,422,422,422,423,423,424],[423,422,422,423,424,425,427,432,437,443,446,449,451,451,451,450,450,447,445,443,439,437,433,428,425,424,423,423],[484,482,479,476,474,467,462,458,455,454,454,454,457,458,464,466,473],[507,507,506,506,506,506,506,507,509,510,514,517,520,522,524,528,530,532,534,537,539,541,542,543,543,543,545,545,547,548,550,550,550,550,550,549,549,549],[511,509,508,508,509,511,514,517,520,522,524,526,528],[563,564,564,566,566,570,571,574,576,577,577,575,574,573,572],[623,622,621,622,625,629,633,636,645,647,655,657,661,662,663],[643,642,642,641,642,642,642,642,642,642,642,640,640,640,640],[684,684,684,684,684,684,681,680,678,676,675,674,673,673,673,674,674,675,676,677,679,680],[686,686,686,686,686,687,690,694,698,703,708,710,715,716,715,714,709,707,700,696,691,688,686,682,680,679],[755,754,753,752,749,746,744,741,736,734,731,729,727,727,727,730,731,737,740,748,753,756],[785,786,786,787,787,787,787,786,785,785,785,784,784,784,784,784,784],[791,791,791,791,791,792,795,796,801,803,807,812,814,815,815,815,814,812,811,810,806,802,801,797,796,794,794,794,794,795,797,800,803,806,808,811,812,813,815,816,817,818,818,816,815,813,810,808,803,801,795,792,789,788],[833,832,831,831,832,833,834,836,838,839,841,843,844,844,844,843,841,840,836,835,830,829,826],[876,877,878,879,880,881,888,891,899,903,907,909,910],[925,926,927,927,927,927,927,926,926,925,925,924,924,924,923,923,923,923,923,924],[930,930,931,932,935,938,941,946,948,953,955,957,957,957,955,953,949,947,943,941,939,936,934],[990,989,988,986,982,978,973,968,965,964,962,961,961,961,962,963,967,968,973,976,979],[1001,1001,1000,1000,999,999,998,998,999,1000,1001,1003,1005,1007,1010,1014,1017,1020,1022,1025,1026,1028,1029,1030,1031,1032,1034,1034,1036,1037,1038,1039,1040,1040,1041,1041,1040,1039,1037,1036,1034,1034,1033],[1005,1003,1002,1003,1004,1005,1008,1011,1018,1021,1028,1033,1035,1039],[1058,1058,1058,1057,1057,1057,1057,1057,1057,1060,1061,1066,1070,1072,1079,1081,1085,1085,1088,1088,1089,1089,1089,1089,1090,1090,1090,1091,1092,1092,1092,1092,1091,1091,1090,1090,1090,1090,1091,1092],[1107,1108,1109,1110,1110,1111,1111,1111,1109,1108,1105,1105,1103,1103,1103,1104,1104,1105,1106,1107],[1107,1107,1107,1108,1110,1111,1114,1116,1119,1120,1122,1124,1127,1128,1128,1128,1128,1127,1126,1125,1122,1119,1118,1114,1113,1112,1111,1113,1114,1115,1116,1119,1120,1120,1121,1122,1122,1122,1122,1122,1121,1119,1117,1116,1112,1111,1108,1106],[1127,1128,1131,1133,1135,1137,1138,1140,1141,1141,1141,1141,1140,1138,1136,1134,1131,1129,1124,1122,1119,1114,1112,1110,1106,1103]],"y":[[302,303,304,311,322,328,347,353,369,374,392,403,415,421,425,430,442,448,450,451,451,450,446,440],[318,318,317,317,316,315,314,310,307,304,302,301,301,301,304,306,311,315,319,324,327,333,336,339,347,350,353,355],[319,319,319,321,326,335,341,361,375,387,398,403,417,421,426,430,432,432,431,429,428,426],[394,393,391,388,384,382,373,370,359,356,344,339,334,326,320,317,315,314,314,314,316,318,324,337,347,357,363,376,381,393,399,405,410,413,414,415,414],[362,362,362,361,361,361,360,358,357,355,354,353],[333,334,335,336,339,342,353,358,372,380,387,393,397,399,401,401,401,401,400,399,398,397,394,390,388,381,379,371,368,359,353,347,345,343],[339,338,337,336,338,340,346,350,364,374,380,391,394,401,402,404],[345,344,341,340,339,337,334,331,329,327,326,326,327,329,331,333,335,336,337,340,342,343,347,353,357,360,362,364,365,366,366,368,368,371,372,373,376,379,381,382,385,388,389,390,394,396,397,401,402,404,404,404],[298,298,297,298,300,308,315,324,329,333,338,353,362,372,378,392,401,409,416,420,425,427,429,430],[353,353,353,353,353,352,351,350,349,349,348,348,348,349,349],[379,379,379,379,379,379,378,377,376,374,374,373,372,372],[310,312,314,321,333,346,352,370,377,392,398,412,415,419,424,426,427,428,429],[328,327,324,322,321,320,318,316,314,314,314,316,319,323,325,328,331,336,339,342,347,350,354,357,360,361,362,363],[323,322,326,333,338,357,371,383,396,407,415,421,425,427,430,430,431],[412,410,408,407,405,399,392,388,375,370,353,343,334,331,327,322,320,318,317,316,317,320,329,337,346,350,362,366,377,380,389,391,398,403,406,409,410,409],[369,370,370,371,371,371,371,370,369,368,367,366,365],[308,308,307,308,310,319,324,341,353,365,374,383,393,397,400],[360,360,359,359,359,358,358,357,356,356,355,355,355,355,355],[343,341,340,340,341,344,348,353,359,366,369,380,382,387,388],[309,308,309,310,317,322,343,351,371,384,390,400,409,413,419,421,425,426,428,428,428,426],[327,326,324,323,321,320,318,317,316,315,315,315,320,324,332,334,342,345,352,355,358,360,361,363,364,364],[325,325,324,324,324,327,329,335,344,349,359,364,378,386,392,398,400,403,403,403,401,400],[325,326,330,333,347,352,366,374,382,384,387,393,395,398,399,402,403],[334,333,331,330,328,327,325,324,322,321,321,321,323,325,327,331,336,340,342,344,351,355,356,361,362,364,365,366,367,367,368,369,370,372,373,375,376,378,379,382,386,389,393,395,399,400,404,405,407,408,409,409,407,407],[309,308,308,307,309,309,311,315,320,323,327,336,341,358,367,375,383,387,396,399,406,408,411],[363,363,364,364,364,364,363,363,361,360,359,359,359],[326,326,327,328,336,340,350,355,365,375,383,391,397,400,407,409,413,414,415,414],[335,328,327,326,325,324,323,323,323,324,324,328,330,335,339,342,346,348,351,352,354,355,356],[320,321,322,324,328,334,342,349,357,361,371,375,378,383,387,389,395,396,398,399,399],[389,388,387,386,384,382,379,377,371,365,362,356,353,346,339,332,327,324,323,322,322,325,328,333,339,345,351,354,360,363,365,368,373,376,380,383,384,387,389,389,389,388,386],[358,358,358,358,358,358,358,358,356,356,353,352,351,349],[368,366,365,363,361,359,356,354,352,345,343,336,331,329,325,324,324,325,328,329,335,337,339,344,347,350,352,359,361,366,369,373,377,379,381,382,384,385,385,385],[326,325,325,325,326,326,331,333,343,347,358,361,369,373,376,378,380,381,381,381],[338,337,333,332,330,328,327,327,326,326,326,327,329,331,334,335,337,341,343,345,349,353,354,358,359,361,361,362,362,363,363,366,368,369,371,374,375,378,383,385,387,388,389,390,390,390,389,387],[295,294,293,294,296,300,306,314,323,332,337,350,355,368,377,385,393,397,402,405,408,412,414,415,417,418]],"t":[[0,16,18,25,36,42,51,58,68,75,84,91,102,108,110,117,125,136,142,150,153,158,167,175],[418,422,425,426,435,442,451,459,473,476,484,491,505,509,520,525,535,542,555,558,567,575,576,585,592,601,608,620],[995,1003,1018,1025,1038,1042,1051,1059,1068,1075,1085,1092,1101,1108,1118,1125,1135,1142,1153,1158,1159,1171],[1506,1512,1518,1525,1535,1543,1556,1560,1569,1575,1585,1592,1592,1604,1609,1618,1622,1626,1637,1642,1642,1651,1659,1669,1676,1685,1693,1703,1709,1722,1725,1736,1742,1755,1759,1760,1775],[2000,2012,2015,2037,2042,2043,2052,2059,2069,2075,2085,2088],[2851,2856,2859,2862,2869,2876,2886,2892,2902,2910,2919,2926,2938,2942,2952,2959,2969,2970,2977,2988,2993,3002,3011,3021,3027,3036,3043,3052,3059,3071,3076,3085,3093,3097],[3369,3377,3393,3402,3435,3436,3443,3452,3460,3471,3476,3486,3493,3505,3510,3519],[3723,3731,3734,3743,3743,3752,3759,3769,3776,3786,3793,3806,3810,3821,3826,3838,3843,3843,3852,3860,3860,3870,3876,3888,3893,3905,3910,3922,3927,3938,3944,3953,3960,3973,3976,3977,3989,3993,4003,4012,4021,4026,4027,4037,4043,4053,4060,4070,4076,4086,4093,4103],[4366,4381,4384,4385,4393,4402,4410,4420,4426,4427,4437,4443,4459,4460,4470,4476,4486,4494,4505,4510,4519,4520,4527,4531],[5003,5060,5068,5077,5086,5094,5103,5111,5122,5127,5139,5143,5154,5160,5170],[5374,5388,5394,5403,5410,5420,5427,5437,5444,5458,5460,5463,5471,5477],[5819,5826,5831,5835,5844,5854,5860,5871,5877,5887,5894,5907,5910,5911,5921,5927,5927,5936,5944],[6150,6161,6164,6165,6170,6178,6180,6188,6194,6204,6210,6221,6227,6238,6244,6244,6254,6260,6261,6269,6277,6278,6288,6294,6304,6311,6313,6319],[6657,6671,6686,6694,6704,6711,6720,6727,6738,6744,6754,6762,6771,6778,6789,6794,6808],[7159,7171,7178,7178,7188,7194,7205,7211,7221,7228,7237,7244,7253,7261,7261,7274,7278,7278,7290,7294,7304,7311,7323,7328,7339,7344,7357,7362,7373,7378,7389,7394,7407,7411,7423,7428,7441,7455],[7644,7649,7661,7678,7688,7694,7705,7711,7722,7728,7728,7737,7744],[8067,8078,8088,8105,8111,8122,8128,8138,8145,8154,8161,8171,8178,8187,8193],[8627,8634,8653,8678,8688,8695,8707,8712,8724,8729,8738,8745,8755,8761,8775],[8915,8928,8934,8937,8962,8974,8979,8990,8995,9006,9011,9027,9029,9039,9045],[9287,9300,9312,9315,9322,9328,9339,9345,9356,9362,9371,9378,9389,9389,9396,9409,9412,9412,9423,9429,9438,9446],[9645,9650,9653,9654,9662,9672,9678,9689,9695,9706,9712,9723,9738,9745,9758,9762,9775,9779,9791,9795,9805,9812,9813,9823,9829,9838],[10100,10105,10108,10112,10120,10129,10139,10145,10156,10158,10162,10173,10179,10189,10195,10206,10212,10223,10229,10241,10245,10255],[10478,10495,10504,10512,10522,10529,10541,10545,10558,10562,10563,10576,10579,10579,10592,10595,10596],[10788,10792,10796,10797,10805,10812,10823,10829,10840,10848,10856,10869,10873,10879,10889,10896,10905,10912,10913,10922,10929,10941,10946,10958,10962,10973,10980,10981,10990,10996,11008,11012,11028,11032,11040,11046,11046,11055,11056,11063,11072,11079,11090,11096,11107,11112,11123,11129,11140,11146,11154,11162,11173,11179],[11399,11414,11418,11422,11438,11446,11446,11457,11463,11473,11475,11479,11489,11496,11507,11513,11523,11530,11542,11546,11556,11563,11574],[12000,12029,12041,12046,12047,12056,12063,12074,12079,12091,12096,12107,12113],[12334,12348,12363,12373,12379,12391,12396,12397,12406,12413,12423,12431,12438,12447,12456,12463,12479,12481,12491,12496],[12681,12693,12699,12706,12714,12724,12730,12741,12747,12755,12763,12773,12780,12789,12796,12807,12813,12822,12830,12830,12841,12847,12847],[13086,13090,13097,13106,13113,13124,13130,13141,13147,13158,13163,13171,13175,13181,13188,13197,13207,13215,13224,13230,13244],[13508,13521,13525,13528,13540,13547,13558,13563,13575,13580,13589,13597,13598,13608,13614,13625,13630,13639,13647,13657,13663,13674,13680,13691,13697,13708,13713,13722,13730,13731,13741,13743,13747,13757,13763,13775,13781,13793,13809,13814,13825,13830,13842],[13984,13994,14006,14013,14022,14028,14031,14042,14047,14058,14064,14075,14080,14092],[14423,14434,14447,14457,14464,14475,14480,14481,14491,14497,14506,14514,14524,14531,14542,14547,14559,14564,14578,14580,14592,14597,14598,14607,14614,14614,14624,14630,14642,14647,14648,14657,14664,14675,14680,14681,14691,14698,14707,14718],[14943,14951,14956,14964,14974,14981,14992,14997,15009,15014,15025,15032,15042,15047,15059,15064,15075,15081,15092,15097],[15266,15274,15277,15282,15291,15297,15309,15314,15327,15332,15335,15341,15347,15356,15364,15375,15375,15381,15391,15392,15398,15408,15415,15427,15431,15442,15448,15472,15481,15489,15497,15508,15514,15524,15528,15531,15542,15547,15559,15564,15576,15582,15595,15600,15609,15618,15626,15631],[15826,15832,15835,15839,15847,15858,15864,15876,15882,15893,15898,15909,15915,15926,15931,15942,15948,15959,15964,15965,15975,15981,15982,15991,15998,15998]],"version":"2.0.0"}

    En notant que A et B sont des événements disjoints, nous avons

    P(AB)=PO=0

    Insère maintenant la valeur de leur intersection, nous avons

    PAB=PA+PB{"x":[[54,54,53,53,54,54,54,54,53,52,52,52,52,52,52,52,52,52,53,53,54,55,56,56,58,59],[58,57,55,54,55,58,62,67,73,80,86,91,96,104,105,105,105,102,100,95,89,85,77,73,66,58,53,47,43,42,41],[185,177,174,172,167,160,156,145,141,132,130,126,125,125,127,129,133,135,141,150,157,165,172],[211,208,206,206,205,203,201,200,198,197,195,193,192,191,190,189,188,188,188,189,190,193,195,200,205,208,217,219,225,227,229,233,237,239,240,241,242,242,243,243,242,242,240,239,238,238,238,238,238,238,238,238],[200,198,197,200,204,209,215,218,227,232,236,237,239,241,242,243,244,244,243],[278,277,276,275,274,274,274,274,276,277,281,284,287,293,297,302,304,310,312,315,318,322,324,329,330,332,334,335,335,336,336,336,335,334,333,332],[369,370,370,371,371,371,370,369,368,367,366,365,365,364,364],[370,370,372,373,375,378,382,386,389,391,397,399,401,402,403,402,401,399,398,397,393,389,383,380,379,378,378,380,381,383,387,389,391,396,400,408,412,417,419,420,422,422,420,416,411,408,406,400,397,394,391,386,384,382],[429,432,434,443,448,454,458,461,463,464,464,464,462,457,452,447,445,439,437,433,433,432],[509,506,507,510,512,518,521,529,536,541,546,549,552,553],[510,511,512,516,521,527,534,537,546,548,554,555,558],[607,607,608,608,609,609,609,610,610,611,611,611,611,611,611,610,610,609,609,609,609,609,609,610],[618,616,617,618,622,625,628,635,638,645,647,652,654,655,656,656,654,650,645,639,634,628,623,619,617],[697,696,692,688,685,681,678,676,672,670,666,665,663,664,666,670,672,679,682,688,691,694,697],[718,720,722,724,725,727,729,732,733,738,740,743,744,746,748,749,750,751,751,751,752,753,753,753,754,755,755,755,756,756,757,758,759,760,761,762],[717,716,716,718,720,727,733,740,745,750],[787,788,792,793,794,796,800,803,804,807,807,807,807,806,804,802,800,797,793,788,786,783,781,780],[839,840,841,845,846,851,854,862,865,872,877,879,881,882],[864,865,866,867,867,867,866,864,862,860,859,856,855,854,854,854],[925,924,923,923,923,922,922,922,922,921,921,920,920,919,919,919,919,919,920,920,921],[928,929,932,935,938,943,948,956,960,964,966,966,966,965,962,960,955,951,947,945,943,939,937],[1003,1003,1002,1002,1001,999,997,994,990,987,985,983,981,981,981,983,988,992,994,1002,1005,1007,1009],[1028,1028,1028,1027,1026,1025,1024,1023,1023,1022,1022,1021,1021,1021,1021,1022,1022],[1025,1024,1024,1024,1025,1028,1029,1035,1039,1041,1045,1049,1052,1053,1053,1053,1050,1048,1045,1042,1041,1036,1034,1032,1031,1031,1034,1037,1040,1042,1047,1048,1052,1053,1054,1054,1053,1052,1050,1048,1047,1046,1042,1041,1037,1033,1029,1026,1024,1021,1020],[1077,1078,1085,1087,1088,1090,1092,1092,1092,1092,1089,1087,1080,1077,1067,1060,1053,1047,1045]],"y":[[340,338,337,338,340,350,355,376,391,406,422,437,454,461,482,488,497,501,507,512,515,516,516,515,509,506],[350,349,346,343,340,335,331,326,324,322,322,324,328,344,351,354,358,364,368,376,384,389,397,401,408,413,416,417,418,417,416],[339,340,341,342,347,355,359,374,380,399,405,423,430,445,455,463,470,472,476,478,478,476,471],[384,401,410,414,419,426,434,438,444,447,452,456,457,458,459,458,456,452,449,439,435,420,415,401,389,385,372,369,363,361,359,356,356,359,365,369,383,388,403,409,424,429,443,451,458,460,463,465,468,467,465,463],[408,408,408,408,408,407,406,405,402,400,399,399,399,399,399,399,400,401,402],[385,385,386,391,399,410,423,428,441,444,450,452,453,452,450,446,444,438,435,431,428,421,417,404,400,396,389,382,379,374,371,369,363,361,359,358],[369,369,370,373,380,390,400,405,415,423,434,440,442,449,452],[371,369,361,359,357,354,352,349,348,348,347,348,350,353,357,361,364,369,372,375,381,388,396,402,405,408,409,410,410,410,411,411,411,412,413,415,416,419,421,423,428,430,436,441,445,448,450,454,455,457,458,459,459,459],[339,340,341,348,354,363,372,381,390,395,410,415,426,441,451,461,465,477,479,485,486,486],[395,394,394,393,393,393,393,392,391,391,390,390,389,389],[427,428,428,428,427,425,424,423,420,420,419,419,419],[343,342,339,340,341,344,347,357,366,377,383,388,394,411,417,432,438,450,457,464,469,471,475,474],[354,349,348,347,346,345,345,346,346,350,351,356,358,360,364,368,373,378,384,389,394,398,402,404,404],[358,359,363,369,377,386,391,395,405,410,425,430,444,451,457,461,463,466,466,466,466,465,464],[432,426,421,416,410,403,395,387,383,373,370,365,363,360,359,358,360,362,369,372,382,386,389,397,405,412,416,423,429,432,436,439,441,443,444,444],[409,409,408,408,407,406,404,402,400,398],[348,347,345,345,345,346,349,353,356,368,372,386,391,396,404,413,417,425,432,442,444,449,450,452],[401,401,401,402,402,402,402,402,402,402,402,402,402,402],[381,381,380,380,381,384,389,396,403,411,415,425,430,434,436,438],[362,377,381,391,399,409,418,423,432,440,443,450,453,458,460,463,466,467,465,464,462],[366,365,362,361,361,360,360,361,363,366,370,372,379,382,388,390,395,397,400,401,401,403,403],[376,375,374,373,373,374,376,380,386,393,402,411,419,428,435,446,453,455,456,456,456,455,454],[375,376,378,383,391,400,409,417,420,428,431,437,440,442,443,443,442],[392,385,384,382,380,376,375,371,369,368,367,367,368,369,373,375,379,383,387,390,392,398,400,403,406,407,409,410,411,411,413,413,416,417,422,425,428,431,433,435,437,438,440,441,442,443,444,444,444,444,444],[357,358,367,370,374,382,391,395,409,414,427,432,445,449,461,466,470,474,474]],"t":[[0,8,13,22,29,39,46,56,63,75,80,91,98,105,113,122,130,131,141,148,158,163,171,179,189,196],[408,414,417,421,430,439,446,456,464,476,480,491,496,524,530,530,539,547,548,558,563,572,580,582,593,597,608,613,626,630,635],[999,1014,1022,1023,1030,1039,1047,1056,1063,1076,1080,1089,1097,1107,1113,1122,1130,1143,1148,1158,1164,1173,1180],[1535,1550,1556,1563,1564,1573,1580,1590,1597,1597,1607,1614,1623,1630,1631,1642,1648,1656,1663,1673,1680,1690,1697,1707,1714,1723,1730,1740,1747,1747,1756,1763,1775,1780,1791,1797,1809,1814,1825,1830,1840,1847,1859,1863,1873,1880,1881,1890,1897,1914,1925,1931],[2113,2119,2122,2155,2164,2173,2180,2190,2197,2207,2214,2223,2228,2230,2240,2247,2257,2264,2273],[2577,2591,2597,2607,2614,2624,2630,2640,2648,2657,2664,2675,2681,2693,2697,2707,2714,2723,2725,2730,2733,2740,2747,2757,2764,2764,2775,2780,2794,2797,2798,2807,2814,2824,2831,2840],[3037,3048,3051,3056,3064,3074,3081,3091,3097,3108,3114,3127,3131,3142,3150],[3327,3339,3343,3347,3348,3358,3364,3374,3381,3391,3397,3407,3415,3424,3432,3440,3448,3457,3460,3464,3476,3481,3493,3497,3510,3514,3526,3531,3540,3543,3548,3557,3558,3564,3573,3581,3591,3598,3606,3614,3622,3631,3644,3648,3657,3664,3665,3674,3681,3682,3695,3698,3699,3708],[3912,3927,3932,3941,3948,3956,3964,3974,3981,3991,3998,4010,4014,4026,4031,4041,4049,4062,4065,4076,4081,4091],[4396,4413,4439,4448,4458,4465,4475,4481,4491,4498,4508,4515,4529,4531],[4738,4755,4759,4765,4777,4781,4791,4798,4808,4815,4825,4831,4839],[5086,5100,5103,5115,5118,5123,5132,5141,5148,5161,5165,5165,5176,5181,5192,5198,5208,5215,5225,5232,5243,5249,5258,5287],[5498,5511,5516,5525,5532,5542,5548,5559,5565,5579,5582,5590,5598,5599,5608,5615,5625,5632,5645,5649,5661,5665,5677,5683,5690],[5962,5970,5973,5974,5982,5991,5998,5999,6009,6015,6027,6032,6041,6048,6059,6065,6074,6082,6092,6098,6099,6108,6113],[6466,6479,6490,6499,6509,6515,6528,6532,6542,6549,6561,6565,6566,6578,6583,6594,6610,6616,6625,6632,6641,6649,6649,6658,6665,6677,6682,6691,6699,6699,6711,6716,6728,6732,6743,6757],[6937,6952,6958,6966,6976,6982,6993,6999,7009,7016],[7302,7315,7318,7319,7324,7325,7333,7343,7349,7359,7366,7376,7382,7383,7393,7399,7412,7416,7426,7432,7444,7449,7449,7458],[7751,7769,7774,7782,7784,7794,7799,7810,7816,7826,7832,7842,7849,7859],[8029,8042,8045,8046,8051,8059,8066,8076,8083,8093,8099,8110,8116,8127,8133,8143],[8402,8416,8420,8425,8433,8443,8449,8458,8466,8476,8477,8483,8492,8500,8500,8513,8517,8528,8545,8550,8554],[8749,8762,8765,8766,8775,8783,8793,8800,8810,8816,8827,8833,8843,8850,8862,8867,8877,8883,8894,8900,8900,8910,8916],[9140,9150,9154,9162,9167,9177,9183,9194,9200,9210,9216,9227,9234,9244,9250,9275,9283,9293,9301,9313,9318,9319,9325],[9534,9546,9552,9560,9567,9577,9583,9594,9600,9613,9617,9627,9633,9643,9650,9660,9667],[9794,9809,9812,9817,9827,9833,9844,9850,9861,9867,9877,9883,9893,9900,9909,9917,9927,9933,9943,9950,9960,9967,9976,9983,9995,10000,10014,10017,10025,10033,10047,10050,10061,10067,10076,10083,10094,10100,10109,10117,10118,10128,10133,10134,10143,10150,10162,10167,10177,10184,10188],[10419,10434,10437,10442,10443,10450,10460,10467,10478,10484,10495,10500,10511,10517,10528,10534,10547,10550,10562]],"version":"2.0.0"}

    On le lance deux fois et on note les résultats, trouve la probabilité que le premier résultat soit 1 et que le deuxième résultat soit un nombre pair.

    Un dé est lancé deux fois et les résultats sont notés. Trouve la probabilité que le premier résultat soit 1 et que le deuxième résultat soit un nombre pair.

    Solution

    Note que 1 n'est pas un nombre pair, donc les deux événements sont disjoints dans ce cas. La raison en est que les résultats de l'apparition d'un nombre pair ne se chevauchent pas avec le résultat de l'apparition de 1 lors du premier lancer.

    Soit les deux événements A et B respectivement,

    PA=16

    puisque 1 est un résultat parmi 6 possibilités, et,

    PB=36{"x":[[151,150,150,151,152,153,154,154,154,154,154,154,153,152,152,151],[143,144,146,149,163,168,179,183,191,197,202,204,207,207,206,205,199,196,193,181,178],[305,300,294,292,284,280,271,262,260,259,259,260,261,266,271,276,282,289,297,300,313],[342,343,343,343,343,344,344,345,346,346,347,347],[413,418,423,430,434,448,452,460,466,471,474,475,476,477,476,474,471,469,463],[537,549,552,564,568,576,579,586,589],[544,549,551,557,565,573,581,589,595],[684,684,684,685,688,701,704,707,710,717,720,723,724,725,724,722,717,715,712,708,707,707,706,706,706,707,710,711,717,719,724,725,728,728,728,727,721,719,710,707,704,701,691,683,679],[677,678,682,686,704,711,732,738,744,754,758,762,768,773,775,778,779,779],[747,743,741,735,732,725,721,717,715,713,713,713,716,717,721,723,725,729,731,735,736,740,741,742,742,738,736,728,726,723,717,712,709],[340,337,337,336,336,337,338,340,341,343,347,351,353,359,361,365,366,367,368,368,367,364,363,361,360,358,358,357,356,356,357,358,361,362,367,369,375,378,380,381,381,379,376,373,369,365,360,358,351,349,343,339,338]],"y":[[289,328,345,362,379,394,409,415,433,438,451,455,458,463,464,464],[286,275,273,269,260,258,254,253,253,255,259,261,269,273,284,289,303,308,312,329,332],[262,260,259,259,264,267,281,311,326,334,350,359,365,384,394,401,405,406,405,404,396],[284,284,283,285,287,301,307,327,333,342,347,352],[246,244,246,250,253,264,269,278,289,301,311,316,327,338,350,362,373,378,392],[285,282,281,279,278,276,275,273,271],[319,317,317,314,311,307,304,301,299],[244,236,232,230,226,216,214,213,212,209,208,209,210,214,218,223,233,236,241,248,250,252,256,257,258,260,262,262,265,266,270,271,276,279,283,285,290,292,296,297,297,298,297,296,295],[359,358,357,357,353,351,346,345,344,342,342,341,341,341,341,342,343,345],[393,395,396,403,406,418,427,437,446,456,460,466,473,473,474,474,473,471,469,465,462,453,450,442,440,437,437,438,440,442,446,451,454],[294,291,290,288,287,285,284,282,281,280,278,276,276,275,275,277,278,282,284,290,292,302,304,308,311,314,315,316,317,318,317,317,316,315,314,313,313,313,314,316,317,322,326,331,336,342,346,348,352,352,353,353,352]],"t":[[0,13,19,26,36,43,53,59,70,76,84,93,93,103,109,120],[429,442,446,451,460,470,476,477,487,493,503,510,520,526,536,543,554,560,560,579,585],[951,963,968,977,987,993,1004,1020,1027,1037,1043,1044,1052,1060,1068,1077,1087,1093,1103,1110,1120],[1461,1475,1478,1479,1481,1493,1502,1510,1520,1527,1527,1535],[2311,2324,2327,2335,2344,2354,2360,2371,2377,2387,2394,2394,2405,2411,2421,2427,2437,2444,2454],[2951,2964,2970,2977,2988,2994,2994,3004,3011],[3264,3277,3280,3286,3294,3304,3311,3321,3327],[3710,3722,3728,3738,3744,3762,3769,3770,3777,3788,3794,3805,3811,3821,3828,3838,3854,3861,3869,3878,3886,3889,3894,3903,3905,3911,3921,3928,3938,3944,3955,3962,3972,3978,3988,3994,4005,4011,4022,4028,4028,4039,4044,4055,4061],[4512,4532,4538,4545,4555,4561,4572,4578,4578,4589,4594,4595,4605,4611,4624,4628,4628,4644],[4977,4990,4996,5005,5011,5022,5028,5039,5045,5055,5061,5070,5078,5088,5095,5095,5106,5111,5112,5124,5128,5139,5145,5155,5161,5174,5178,5189,5195,5195,5207,5211,5220],[14609,14619,14625,14632,14642,14648,14659,14665,14665,14673,14682,14692,14698,14709,14715,14726,14732,14742,14748,14759,14765,14783,14790,14798,14809,14815,14816,14826,14832,14842,14859,14865,14876,14882,14892,14898,14909,14915,14926,14932,14942,14948,14959,14966,14976,14982,14992,14998,15009,15016,15026,15032,15040]],"version":"2.0.0"}

    puisqu'il y a 3 nombres pairs parmi les 6 possibilités.

    Nous voulons trouver PAB. On utilise donc la formule d'addition pour des événements disjoints puisque la réalisation d'un événement n'affecte pas la réalisation de l'autre. On a donc ,

    PAB=PA+PB{"x":[[88,86,85,86,86,87,88],[88,88,89,89,91,96,112,120,124,127,129,134,135,135,133,130,126,121,114,109],[236,225,221,215,210,204,201,195,192,184,182,176,175,175,178,179,187,190,199,203,207],[263,263,263,263,264,266,271,273,274,278,282,286,288,292,296,297,300,300,301,301,302,302,302,302,302,302,303,304,305,306],[259,258,257,256,255,255,261,263,273,280,286,293,298,300,302,303,304],[348,348,346,346,349,350,354,358,360,366,368,376,382,386,391,395,399,400,404,405,406,406,406,406,405,404,403],[451,452,453,453,453,453,453,453,453,453,453],[450,449,449,451,452,454,462,466,474,477,479,484,485,488,488,486,485,481,479,475,469,465,462,460,460,461,463,468,472,477,480,488,490,494,496,499,501,502,500,497,495,490,487,485,475,470,466,465],[527,528,530,531,537,544,550,558,559,561,560,559,555,553,545,542,535,531,527],[620,620,622,624,633,636,649,656,662,664,667,669,670],[622,619,620,624,629,635,639,650,657,661,666,671,674,677],[716,716,717,717,718,719,719,719,718],[712,712],[713,710,709,710,712,719,721,730,736,742,744,746,748,750,750,749,748,743,738,732,727,724],[797,795,792,786,779,772,767,764,760,760,764,769,772],[809,808,809,811,814,816,824,830,832,838,839,842,843,843,842,840,840,839,838,837,836,836,836,836],[813,812,813,815,820,823,835,839,848,852,854,855],[881,883,884,886,888,891,893,898,899,901,900,898,897,891,889,886],[938,940,942,943,944,946,953,956,965,971,976,980,982,983,983],[960,962,963,963,963,962,961,961,960,960,961],[1019,1018,1018,1017,1016,1014,1011,1009,1004,1002,1000,999],[999,1000,1001],[1016,1015,1015,1016,1018,1023,1025,1031,1041,1046,1050,1052,1052,1049,1048,1041,1038,1030],[1075,1072,1070,1068,1066,1063,1061,1059,1056,1055,1054,1055,1056,1058,1063,1067,1069,1074],[1090,1090,1091,1091,1092,1092,1093,1093,1093,1092,1091,1090,1088,1087,1086,1087],[1095,1095,1095,1096,1098,1100,1105,1107,1112,1114,1118,1119,1119,1119,1119,1117,1115,1111,1108,1105,1103,1102,1102,1103,1106,1107,1111,1113,1114,1116,1118,1120,1121,1123,1123,1123,1123,1120,1117,1112,1107,1102,1099,1093,1092,1090],[1139,1138,1137,1136,1136,1136,1136,1138,1139,1141,1141,1138,1134,1130,1126,1123]],"y":[[228,393,416,420,421,420,418],[232,230,230,229,226,224,222,223,224,225,227,233,236,245,253,261,269,276,285,290],[251,254,255,258,263,271,275,285,291,312,319,340,347,364,372,376,383,385,391,392,393],[339,329,321,311,307,303,292,289,286,281,277,274,274,273,276,278,290,295,306,311,324,329,346,351,366,369,379,382,385,385],[317,317,317,317,317,316,313,312,309,307,305,304,303,303,303,304,304],[306,315,325,329,346,350,358,360,361,360,359,352,345,336,326,314,303,297,280,276,266,260,258,257,257,257,258],[263,263,264,265,275,280,300,307,323,328,333],[283,279,273,271,269,267,262,260,256,256,255,255,256,264,266,273,275,281,283,289,296,301,306,309,310,313,313,314,315,315,316,318,319,321,322,325,328,331,338,341,343,348,349,351,356,357,358,357],[241,241,241,242,246,254,264,286,291,309,321,327,345,351,367,373,384,389,394],[302,303,303,303,302,302,302,302,303,304,305,305,306],[331,332,332,332,332,331,330,328,327,326,326,326,326,326],[261,262,263,271,286,295,304,322,337],[381,386],[282,277,276,273,273,270,268,264,261,260,260,260,260,264,266,273,275,283,288,293,297,299],[275,276,278,282,289,299,311,317,333,338,350,355,357],[325,307,303,300,291,288,278,274,273,272,272,279,282,295,300,313,318,322,329,336,341,344,345,346],[311,312,311,311,309,307,303,301,299,298,298,298],[274,274,274,274,275,280,285,303,309,327,338,346,350,361,364,367],[311,310,309,308,307,307,303,302,299,298,298,298,298,298,299],[286,290,296,305,315,324,331,334,339,340,341],[278,279,280,285,295,307,321,327,344,354,362,364],[372,373,373],[279,277,276,273,272,270,269,268,267,267,268,270,274,279,282,290,292,299],[279,277,277,278,282,289,299,305,323,328,341,346,348,349,351,350,349,347],[293,292,293,294,295,300,306,314,318,327,331,333,336,337,336,335],[292,290,289,287,285,285,283,282,281,281,281,282,284,286,287,290,292,295,298,301,303,304,305,306,306,307,308,310,312,315,318,321,323,327,329,330,332,334,335,336,336,336,336,335,334,330],[278,282,287,296,301,305,310,322,326,336,342,349,354,359,364,365]],"t":[[0,16,30,33,40,58,65],[483,487,491,499,508,515,533,540,549,549,560,565,575,582,591,599,608,615,634,645],[1033,1034,1043,1049,1061,1066,1066,1075,1082,1092,1099,1108,1118,1124,1136,1144,1149,1157,1165,1175,1178],[1521,1528,1534,1538,1544,1549,1557,1566,1566,1574,1583,1592,1599,1609,1616,1624,1636,1645,1649,1650,1661,1666,1676,1683,1692,1699,1709,1716,1735,1742],[1955,1960,1970,1974,1982,1992,2008,2016,2024,2033,2041,2058,2066,2076,2082,2096,2099],[2422,2434,2438,2444,2463,2466,2476,2483,2492,2499,2509,2516,2527,2537,2544,2549,2561,2566,2576,2583,2593,2599,2609,2616,2617,2629,2641],[2841,2843,2858,2866,2875,2883,2892,2899,2909,2916,2920],[3152,3164,3169,3174,3175,3183,3195,3200,3208,3216,3217,3226,3234,3251,3262,3266,3275,3283,3284,3293,3300,3309,3316,3325,3334,3341,3353,3361,3366,3378,3383,3393,3400,3408,3410,3416,3426,3435,3451,3462,3466,3475,3479,3484,3492,3500,3508,3516],[3690,3693,3700,3708,3716,3726,3737,3752,3758,3767,3778,3783,3793,3800,3809,3816,3826,3837,3852],[4240,4250,4283,4292,4300,4308,4317,4327,4334,4342,4350,4353,4358],[4518,4532,4550,4559,4567,4575,4583,4596,4600,4614,4617,4628,4634,4647],[4853,4866,4875,4883,4893,4900,4901,4914,4917],[4964,4968],[5174,5188,5193,5201,5209,5217,5225,5234,5243,5251,5259,5264,5267,5278,5284,5296,5300,5312,5317,5328,5334,5342],[5744,5749,5751,5761,5767,5775,5784,5792,5801,5810,5817,5826,5834],[6085,6101,6106,6109,6117,6128,6134,6146,6151,6163,6168,6179,6184,6196,6201,6212,6217,6218,6230,6234,6246,6251,6263,6267],[6442,6456,6467,6470,6479,6484,6494,6501,6511,6518,6531,6534],[6712,6712,6720,6727,6734,6749,6751,6761,6768,6780,6784,6797,6801,6813,6818,6818],[7091,7105,7110,7118,7118,7126,7135,7144,7151,7161,7168,7182,7185,7196,7201],[7336,7394,7402,7410,7418,7430,7435,7446,7451,7463,7468],[7668,7684,7688,7693,7703,7710,7718,7728,7735,7745,7751,7759],[7778,7782,7790],[7978,7993,8002,8011,8018,8028,8035,8049,8051,8062,8068,8080,8085,8099,8101,8112,8118,8131],[8359,8372,8377,8385,8395,8402,8412,8418,8431,8435,8446,8451,8465,8468,8479,8485,8497,8502],[8667,8693,8716,8719,8719,8728,8735,8745,8752,8762,8768,8777,8785,8802,8813,8818],[8951,8965,8970,8985,8993,9002,9012,9018,9031,9036,9047,9052,9064,9068,9069,9078,9086,9100,9102,9113,9119,9129,9135,9152,9162,9169,9184,9185,9196,9202,9215,9219,9229,9235,9246,9247,9252,9263,9269,9280,9285,9298,9302,9314,9319,9330],[9483,9497,9503,9512,9519,9519,9528,9535,9544,9552,9565,9569,9581,9586,9598,9603]],"version":"2.0.0"}

    PAB=16+36=23

    Ainsi, la probabilité d'obtenir 1 au premier lancer et un nombre pair au second lancer est de 23{"x":[[314,314,314,314,314,317,319,327,334,341,344,354,356,359,361,363,363,361,356,350,343,337,331,329,324,323,322,323,325,329,334,337,345,359,365,381,391,400,410,418,425,428],[304,307,310,326,340,359,372,378,384,400,405,409,417,424,428,431,432],[363,360,360,359,359,360,363,367,372,375,383,386,391,393,393,393,392,388,386,382,380,379,377,376,376,380,384,388,392,397,402,402,402,399,397,389,385,373,363,354,350,347,344,342]],"y":[[186,185,183,181,180,176,174,170,168,166,166,166,167,169,170,178,181,192,200,209,218,227,234,238,245,247,251,253,253,254,254,254,252,249,247,243,241,239,237,236,235,235],[322,322,321,318,316,313,312,311,311,310,309,309,310,311,312,313,314],[388,388,387,387,386,384,381,378,376,375,372,371,371,372,375,378,379,386,389,396,398,401,405,408,409,413,415,418,421,424,430,434,436,442,444,450,453,458,460,460,458,456,452,448]],"t":[[0,6,16,21,29,39,46,56,62,72,79,89,96,96,104,112,123,129,139,146,156,162,173,179,189,196,206,214,227,229,239,246,256,262,273,279,289,300,306,312,322,329],[569,604,612,622,629,649,654,655,662,671,679,680,689,696,705,712,722],[955,969,972,979,979,988,996,1004,1013,1024,1029,1042,1046,1059,1062,1075,1079,1091,1096,1108,1113,1113,1125,1129,1141,1146,1157,1163,1175,1179,1196,1204,1214,1227,1229,1239,1246,1256,1263,1271,1279,1280,1289,1292]],"version":"2.0.0"}.

    Probabilité conditionnelle

    Nous considérons deux événements, A et B, tels que la probabilité de l'événement A dépend de l'événement B. En d'autres termes, le résultat de A sera différent selon que B s'est produit ou non. Nous écrivons un événement "A|B" qui se lit comme "l'événement A étant donné que l'événement B s'est produit".

    La probabilité qui régit de tels événements est connue sous le nom de probabilité conditionnelle, où un événement est basé sur la condition qu'un autre événement se soit produit.

    Règle du produit

    En utilisant le concept de probabilité conditionnelle, nous pouvons esquisser une formule pour la règle du produit . Elle est donnée comme suit,

    PAB=PB|A PA

    Verbalement, "la probabilité de l'occurrence de A et de B est égale au produit de la probabilité que B se soit produit A et de la probabilité de A elle-même". Nous pouvons également étendre cette loi à trois événements, à savoir A, B et C,

    PABC=PC|AB PB|A PA

    Des expressions similaires peuvent être dérivées pour autant d'événements que l'on veut.

    Considère l'exemple ci-dessous pour comprendre comment la survenue d'un événement dépend de la survenue d'un événement précédent.

    On considère 2 sacs, un sac orange et un sac noir. Il y a 4 bonbons dans le sac orange et 5 bonbons dans le sac noir. Il y a aussi 2 chocolats dans le sac orange et 3 chocolats dans le sac noir. Un bonbon est choisi au hasard dans l'un des sacs, que peut-on dire de la probabilité que le bonbon choisi soit un bonbon ?

    Solution

    Soit A l'événement que le bonbon choisi est un bonbon et soit B l'événement que le bonbon a été choisi dans le sac orange. Soit C l'évènement que le sac choisi était le sac noir.

    On voit ici que la probabilité d'obtenir un bonbon dépend du sac choisi. Si le bonbon est choisi dans le sac noir, la probabilité est différente s'il a été choisi dans le sac orange.

    Règles de probabilité, Le diagramme d'arbre de tous les événements, StudySmarter Diagramme de l'arbre de tous les événements, StudySmarter Originals

    Considère le diagramme ci-dessus, ici tous les événements possibles sont ramifiés afin de mieux comprendre les probabilités.

    (i) Si le bonbon a été choisi dans le sac noir, on dit que la "probabilité d'obtenir le bonbon étant donné qu'il provient de la boîte orange".

    Selon les événements que nous avons définis, la probabilité de cet événement est notée PA|B{"x":[[163,163,163,163,163,164,164,165,166,166,167,167,168,168,168,168,168,169,169,169,170,170,171,171],[148,147,147,148,150,157,162,167,184,194,204,213,218,230,234,243,247,250,251,251,249,243,240,232,222,212,209,206,203,198,195,194],[341,339,329,327,324,321,315,311,308,300,292,285,282,277,275,269,268,267,268,274,277,287,290,295,303,308,312,322,331],[395,393,391,391,390,390,392,394,395,399,401,406,408,414,419,424,428,429,433,437,440,443,445,447,450,453,456,457,459,461,462,465,465,466,467,468,468,470,470,471,472,473,475,477,479,481,483,484,487,488,490,490,491],[388,390,392,402,411,417,425,432,439,445,453,458,462,463,466],[562,563,563,564,564,565,566,567,567,568,569,569,570,570,571,571,572,573,574,575,577,579,580,582,583,585,585,588],[662,663,663,664,664,665,665,665,664,664,663,662,662,661,661,662,663,664,667,669,672,674,675],[671,671,674,677,679,681,689,692,703,707,710,717,720,722,726,728,728,729,729,726,722,716,709,701,693,689,680,677,674,673,674,675,677,679,684,690,698,702,706,714,719,727,735,742,745,750,751,751,750,744,741,730,721,712,706,702,698,689,681,674],[788,790,800,803,806,812,818,827,832,835,836,837,837,835,832,829,827,820,816,808,800,792,788,779,776,771]],"y":[[209,211,213,216,219,233,238,257,272,286,302,311,338,348,378,439,445,458,470,473,477,480,485,487],[229,226,224,217,215,209,206,204,197,195,195,197,199,205,207,217,224,232,236,240,249,259,265,275,286,296,300,303,305,309,310,311],[226,226,226,229,231,235,244,250,256,270,285,300,309,324,333,358,366,390,398,415,420,431,434,437,440,441,441,441,438],[407,407,405,404,398,391,382,372,367,349,343,325,319,300,289,277,267,262,253,245,239,234,231,230,228,228,228,229,231,235,238,249,254,268,279,292,298,317,324,331,337,349,366,376,384,392,398,401,408,409,413,414,415],[343,341,341,339,338,337,337,336,335,335,334,334,334,334,334],[222,221,219,220,222,227,234,243,254,266,278,285,306,312,326,339,347,359,372,383,392,401,405,415,418,425,426,429],[239,239,242,244,247,261,267,283,289,295,302,314,327,340,358,370,379,383,396,399,408,410,412],[250,247,232,227,225,224,219,218,214,213,213,214,215,217,221,227,230,236,243,254,262,270,278,287,295,298,309,312,319,322,326,327,328,329,331,332,333,333,334,335,336,338,340,344,345,353,355,364,368,377,380,389,394,398,400,401,401,402,402,402],[213,213,213,216,219,226,234,248,258,269,274,288,303,318,334,343,350,366,374,391,404,418,423,438,441,448]],"t":[[0,8,14,21,30,36,44,53,63,69,80,86,96,103,113,140,144,153,163,169,170,180,186,194],[451,455,463,469,480,486,487,496,503,513,520,529,536,546,553,563,570,579,586,587,596,603,613,619,629,636,637,646,648,654,661,663],[1036,1045,1048,1053,1055,1062,1070,1070,1079,1086,1096,1103,1103,1113,1120,1133,1136,1146,1154,1164,1170,1180,1186,1187,1196,1203,1203,1216,1220],[1512,1526,1536,1545,1553,1563,1570,1580,1587,1596,1603,1615,1626,1630,1636,1646,1653,1663,1670,1680,1687,1700,1703,1704,1712,1720,1732,1737,1738,1746,1754,1763,1770,1780,1787,1795,1803,1813,1820,1820,1831,1837,1847,1853,1864,1870,1880,1887,1901,1903,1915,1920,1931],[2201,2215,2221,2230,2237,2247,2253,2263,2270,2280,2287,2297,2303,2314,2320],[2627,2637,2639,2641,2645,2654,2662,2670,2680,2687,2697,2704,2720,2721,2730,2737,2737,2747,2755,2766,2771,2782,2787,2796,2804,2815,2820,2830],[3090,3105,3108,3113,3120,3130,3137,3147,3154,3154,3164,3170,3181,3187,3197,3205,3214,3221,3230,3237,3250,3254,3258],[3509,3521,3524,3525,3529,3537,3547,3555,3564,3571,3571,3581,3587,3588,3598,3604,3613,3621,3630,3637,3650,3654,3666,3671,3683,3687,3700,3704,3718,3721,3731,3737,3738,3748,3754,3764,3771,3774,3781,3787,3788,3798,3805,3814,3821,3831,3838,3847,3854,3866,3871,3883,3887,3898,3904,3905,3914,3921,3930,3937],[4266,4275,4278,4281,4288,4298,4304,4315,4321,4331,4337,4348,4357,4366,4371,4371,4382,4388,4388,4398,4405,4413,4421,4431,4438,4448]],"version":"2.0.0"} et se lit comme "A étant donné que B s'est produit".

    (ii) Si le bonbon a été choisi dans la boîte orange, la probabilité d'obtenir un bonbon est notée PA|C et se lit comme "A étant donné que C s'est produit".

    Reprenons l'exemple que nous avons vu plus tôt et calculons la probabilité à l'aide de la règle du produit.

    Il y a 2 sacs, un sac orange et un sac noir. Il y a 4 bonbons dans le sac orange et 5 bonbons dans le sac noir. Il y a aussi 2 chocolats dans le sac orange et 3 chocolats dans le sac noir. Un bonbon est choisi au hasard, trouve la probabilité que le bonbon choisi soit un bonbon et qu'il provienne du sac noir.

    Solution

    Soit A l'événement que le bonbon choisi est un bonbon et soit B l'événement que le bonbon a été choisi dans le sac orange. Soit C l'événement selon lequel le sac choisi était le sac noir.

    Règles de probabilité, Le diagramme en arbre signifiant les probabilités conditionnelles pertinentes, StudySmarterLe diagramme en arbre signifiant les probabilités conditionnelles pertinentes, StudySmarter Originals

    Nous voulons trouver la probabilité que le bonbon choisi soit un bonbon étant donné que le sac est noir, donc nous voulons trouver PAC.

    En utilisant la règle du produit, on obtient ,

    PAC=PA|CPC{"x":[[30,30,30,30,30,30,30,30,30,30,30,30,30,30,29,29,29,29,29,29,29,29,29,29],[25,25,25,26,29,35,41,46,52,54,60,62,65,66,68,69,69,69,64,62,54,51,43,40,38,35,30,28],[142,141,134,132,130,126,117,114,108,101,96,94,89,85,82,81,80,80,80,82,85,88,90,92,96,99,101,106,108,111],[147,146,145,144,143,142,141,141,141,141,143,145,148,150,157,159,166,171,175,177,179,182,185,187,189,190,191,193,194,196,196,197,198,199,199,199,199,199,199,199,199,199,198,198,199,199,199,200,200,200,201],[153,152,150,150,152,153,155,159,161,164,169,171,177,182,186,190,193,195,198,199,201],[246,245,243,242,242,240,240,239,239,239,241,242,246,250,254,256,261,263,268,270,277,279,285,287,292,295,297,298,299,300,301,301,302,302,302,302,302,302,302,302,302,302,302,303,304],[373,372,368,365,364,362,360,356,354,346,342,340,336,334,332,332,333,336,338,344,346,355,358,366,372,375],[394,395,397,398,401,407,410,416,417,420,421,421,420,417,414,410,405,404,400,398,397,395,392,392],[448,449,450,454,456,463,465,467,472,475,479,480,481,482,483,484,484],[443,443,441,440,439,438,437,435,436,439,441,448,450,460,463,474,477,486,488,489,490,491],[543,543,543,543,542,541,540,540,539,538,538,536,535,534,534,534,534,534,535,535,536,537],[539,538,537,537,537,539,541,545,550,552,560,562,569,571,575,576,576,577,577,576,574,573,571,568,566,564,560,557],[634,633,631,628,623,620,613,606,601,599,597,593,591,591,591,592,596,598,605,612,617,623,626],[653,653,652,652,652,652,654,655,656,658,660,661,664,666,669,671,673,676,678,682,683,686,687,689,690,691,692,692,693,694,695,696,697,698,699,699,699,700,700,700,700,702,703,703,704,704,705,705,705,705],[669,665,663,662,662,662,663,664,667,669,676,678,680,685,687,690,694,696,698,699],[737,737,739,739,740,740,740,739,739,738,735,734,733,732,731,731,731,732,733,734,734,735],[801,799,796,793,789,784,778,776,769,767,763,762,761,761,762,763,766,767,769,775,777,783,790,795,797],[820,820,825,827,830,832,837,840,842,842,842,842,842,841,840,837,836,834,831,830,826,822,819,817,813],[896,896,896,896,896,896,896,895,894,893,892,891,891,889,888,887,886,886,886,886,887,888,889,891,892,894],[896,895,894,893,893,893,894,896,897,900,902,907,911,915,917,920,921,921,921,922,922,921,919,917,914,910,906,902,899],[987,986,984,983,977,971,964,957,954,948,946,943,939,937,936,935,936,938,942,944,953,956,960,966,969,973],[1032,1031,1029,1028,1026,1022,1020,1015,1009,1003,1001,996,993,989,985,984,983,983,985,989,994,997,1008,1012,1023,1027],[1063,1064,1068,1069,1072,1073,1078,1080,1081,1084,1086,1086,1086,1086,1085,1083,1081,1079,1074,1071,1068,1060,1054,1048]],"y":[[231,233,236,243,248,264,270,287,298,310,322,328,346,352,362,371,380,384,390,395,398,399,400,399],[246,245,244,242,239,235,232,231,231,232,236,238,242,245,250,256,261,264,275,278,289,292,301,304,306,307,309,309],[236,236,235,235,235,237,245,248,257,267,277,282,293,305,317,323,341,346,357,366,372,377,379,381,383,384,384,384,384,383],[354,354,354,353,350,349,344,342,337,334,326,319,311,307,295,291,281,276,271,268,267,264,262,261,261,261,261,264,267,272,275,282,289,297,302,306,315,319,323,332,336,348,354,359,363,365,368,369,370,368,366],[319,319,319,318,317,316,315,314,313,312,311,310,309,308,307,307,307,307,307,307,307],[344,344,342,341,339,335,334,329,325,316,309,306,295,287,281,277,271,269,265,263,258,258,257,257,259,262,266,269,271,277,281,287,294,299,302,310,322,329,335,342,346,348,353,354,355],[272,272,271,271,271,272,274,277,279,288,295,299,306,313,318,326,331,334,335,338,338,338,338,336,334,332],[236,236,237,238,241,248,251,263,267,279,283,297,301,316,325,335,344,348,355,359,362,368,373,374],[284,284,284,283,283,282,282,282,281,281,281,281,281,281,281,282,283],[312,313,314,315,315,315,316,317,317,316,315,313,312,309,308,306,305,303,303,303,303,303],[256,257,260,263,276,281,297,302,308,318,324,340,345,354,361,371,376,377,380,381,382,382],[263,262,259,258,257,255,254,253,252,252,254,255,260,262,269,272,274,279,284,286,291,293,296,300,303,304,308,311],[254,254,254,256,260,264,273,285,295,301,307,323,333,338,352,356,364,367,371,373,373,373,372],[341,340,336,335,329,327,321,317,313,306,301,297,288,284,277,274,270,266,263,258,257,256,256,258,261,264,266,269,271,277,280,283,289,300,307,315,319,329,332,341,343,348,350,352,352,353,352,349,348,345],[307,308,308,309,310,311,311,311,311,310,308,307,306,304,303,302,301,300,300,299],[269,268,265,264,264,266,268,275,278,286,300,310,320,324,334,338,344,345,350,352,353,353],[275,275,275,275,277,281,287,290,301,306,313,319,322,327,330,331,333,334,334,335,335,335,334,333,332],[241,242,244,245,250,252,261,268,276,280,285,289,299,304,309,318,322,327,335,338,345,351,355,357,362],[261,265,267,274,278,283,294,299,305,315,321,326,331,342,346,351,362,367,372,375,376,377,377,375,373,369],[280,279,275,273,272,270,269,268,267,266,265,265,267,269,273,278,280,283,285,290,292,295,299,301,305,308,311,313,314],[282,282,282,282,283,286,291,298,301,309,314,318,327,331,338,346,351,355,358,360,362,363,363,363,363,363],[299,299,299,299,299,300,300,302,304,308,310,315,318,324,331,334,340,343,347,350,352,353,354,354,354,353],[271,272,274,275,279,282,290,293,296,302,309,312,320,324,328,337,341,345,353,356,360,369,374,378]],"t":[[0,40,47,57,64,74,81,91,97,107,114,124,131,141,147,158,164,164,174,181,191,197,208,222],[521,526,532,541,547,557,564,574,581,589,597,607,614,614,624,631,640,648,657,664,673,681,690,697,698,707,714,723],[1136,1152,1156,1157,1165,1173,1181,1191,1198,1208,1214,1215,1223,1231,1240,1248,1257,1265,1276,1281,1291,1297,1298,1308,1314,1315,1327,1331,1331,1344],[1600,1605,1608,1614,1631,1640,1648,1660,1664,1665,1676,1681,1696,1698,1710,1715,1725,1731,1741,1748,1748,1758,1764,1776,1781,1782,1791,1798,1810,1814,1815,1826,1831,1844,1848,1850,1860,1865,1867,1875,1881,1891,1898,1907,1915,1923,1931,1941,1948,1965,1974],[2176,2190,2193,2198,2208,2215,2223,2231,2232,2241,2248,2248,2258,2265,2275,2282,2293,2298,2311,2315,2327],[2751,2755,2758,2759,2765,2775,2782,2792,2798,2808,2815,2825,2832,2841,2848,2859,2865,2865,2875,2882,2891,2898,2908,2916,2927,2932,2942,2948,2949,2959,2965,2975,2982,2982,2992,2998,3008,3015,3025,3032,3042,3049,3058,3065,3077],[3500,3516,3520,3521,3525,3532,3532,3542,3548,3559,3565,3575,3582,3592,3598,3612,3616,3627,3632,3642,3649,3660,3665,3678,3682,3690],[3988,4025,4032,4042,4049,4059,4065,4076,4082,4092,4100,4109,4117,4126,4132,4142,4149,4159,4165,4166,4176,4182,4192,4200],[5102,5143,5150,5164,5166,5176,5182,5183,5191,5199,5209,5216,5216,5228,5232,5233,5249],[5505,5510,5513,5517,5524,5527,5534,5543,5567,5581,5583,5594,5599,5610,5617,5627,5633,5641,5649,5650,5660,5662],[5984,6016,6025,6033,6043,6050,6060,6066,6066,6077,6083,6093,6099,6110,6116,6127,6133,6143,6149,6150,6160,6167],[6414,6430,6434,6435,6441,6450,6460,6466,6477,6483,6493,6500,6512,6517,6525,6533,6533,6541,6550,6560,6566,6567,6575,6583,6583,6594,6600,6613],[6960,6968,6983,6993,7000,7010,7016,7027,7033,7034,7044,7050,7061,7067,7077,7083,7094,7101,7108,7116,7126,7133,7144],[7423,7435,7438,7443,7450,7461,7467,7467,7478,7483,7484,7496,7500,7500,7511,7517,7518,7528,7534,7543,7550,7560,7567,7581,7583,7594,7600,7601,7611,7617,7617,7627,7633,7644,7650,7661,7668,7677,7685,7697,7700,7711,7717,7727,7733,7743,7750,7767,7768,7777],[7929,7939,7946,7950,7967,7976,7983,7986,7995,8000,8011,8017,8017,8028,8033,8034,8042,8050,8051,8061],[8306,8320,8323,8328,8342,8350,8361,8367,8378,8384,8394,8402,8411,8417,8428,8434,8444,8452,8461,8467,8478,8484],[8832,8838,8843,8851,8861,8867,8878,8884,8894,8901,8911,8917,8918,8927,8934,8948,8951,8951,8959,8967,8978,8984,8995,9001,9009],[9323,9331,9334,9339,9342,9351,9362,9367,9376,9384,9385,9395,9401,9401,9412,9417,9418,9429,9434,9434,9445,9451,9461,9467,9478],[9775,9780,9785,9795,9801,9801,9812,9818,9818,9829,9834,9835,9846,9851,9851,9862,9868,9878,9884,9895,9902,9912,9917,9929,9935,9948],[10140,10154,10157,10162,10170,10178,10185,10195,10201,10212,10218,10229,10234,10246,10251,10262,10268,10268,10279,10284,10285,10296,10301,10301,10309,10319,10328,10335,10346],[10676,10691,10694,10701,10710,10718,10726,10734,10745,10751,10752,10763,10768,10768,10780,10785,10796,10801,10812,10818,10829,10835,10837,10846,10851,10855],[11134,11139,11142,11147,11152,11160,11160,11168,11176,11185,11195,11201,11202,11213,11218,11229,11235,11235,11247,11252,11263,11268,11276,11286,11295,11302],[11552,11564,11567,11570,11580,11585,11596,11601,11602,11613,11618,11629,11635,11635,11647,11652,11652,11664,11668,11669,11680,11685,11696,11702]],"version":"2.0.0"}

    La probabilité que le bonbon provienne du sac noir est de

    PAC=candies in the black bagtotal sweets in black bag=58

    et la probabilité de choisir le sac noir est de 1/2 puisqu'il n'y a que deux sacs,

    PC=12

    En substituant ces valeurs, nous obtenons ,

    PAC=58·12=516

    Par conséquent, la probabilité que le bonbon soit un bonbon et qu'il provienne du sac noir est de 516{"x":[[534,534,533,532,526,524,521,515,512,509,507,501,496,491,490,488,485,483,480,477,475,472,471,471,471,472,472,473,474,475,476,477,478,478,478,477,477,477,477,478,478,479,481,482,483,486,488,490,492,496,498,500,505,508,512,517,521,523,528,530,533,534,534,534,534,531,527,522,517,514,508,502],[430,432,446,457,463,470,484,506,522,536,544,567,574,592,603,607,615,621,624,625],[450,450,450,450,450,449,447,445,444,441,439,436,435,431,430,430,429,429,429,429,429,430,432],[533,532,529,527,525,519,516,510,507,502,497,493,491,489,489,490,491,497,499,507,513,519,523,525,528,533,535,537,539,540,540,540,539,536,530,523,518,506,501]],"y":[[106,105,105,105,107,108,108,110,110,111,111,113,114,115,116,116,116,116,117,117,116,116,116,117,119,123,126,131,136,141,146,156,164,170,172,176,177,178,179,179,178,177,176,174,173,170,168,167,165,163,162,160,159,159,159,161,164,165,170,171,177,179,186,188,191,197,202,207,211,214,218,221],[278,278,275,274,273,273,271,268,266,264,263,261,261,260,260,260,261,262,263,264],[322,323,325,328,336,348,361,374,380,398,404,422,427,442,446,449,455,457,459,461,462,462,460],[315,314,311,311,312,320,324,336,343,357,373,388,403,418,425,441,445,451,452,453,450,446,443,441,437,430,426,422,416,413,410,406,405,404,405,408,410,417,419]],"t":[[0,23,32,39,49,56,56,64,72,73,83,89,97,106,106,116,122,123,133,140,150,166,189,199,206,216,223,233,240,247,256,282,292,303,306,314,323,333,339,350,356,356,366,376,377,383,389,390,400,406,406,416,423,423,433,439,450,456,466,474,483,489,500,506,507,517,522,532,539,549,556,566],[849,865,868,869,873,882,889,899,906,916,923,933,939,949,956,967,973,982,989,995],[1311,1311,1315,1316,1323,1333,1340,1350,1356,1366,1373,1383,1390,1400,1406,1407,1417,1423,1423,1433,1440,1452,1456],[1700,1716,1719,1723,1733,1740,1750,1756,1757,1766,1773,1785,1790,1801,1807,1816,1823,1833,1840,1849,1856,1866,1873,1874,1887,1890,1890,1901,1907,1907,1919,1923,1924,1934,1941,1952,1956,1966,1974]],"version":"2.0.0"}.

    Événements indépendants

    Deux événements sont indépendants l'un de l'autre si la survenance de l'un n'affecte pas la survenance de l'autre de quelque manière que ce soit.

    Ce principe peut être étendu à un nombre fini d'événements, tant qu'ils n'affectent pas la probabilité de chacun d'entre eux. Une propriété importante des événements indépendants peut être exprimée par une formule,

    PAB=PAPB{"x":[[81,81,80,80,80,79,78,78,77,76,76,76,76,76,76,77,77,77,77,78],[79,80,81,82,85,91,99,107,114,121,126,128,133,134,137,137,137,136,134,130,128,125,118,115,112,106,101,99],[220,219,217,216,215,211,208,203,198,192,187,184,175,172,165,161,158,158,158,160,162,168,170,177,180,189,192],[220,220,220,221,223,225,230,232,237,240,247,250,252,257,261,263,268,269,273,275,276,278,279,279,279,279,279,279,278,278,279,279,280,280,280],[232,232,234,237,240,245,248,253,256,258,262,265,266,271,272,274,275,276,277],[313,313,314,315,315,319,320,323,324,326,331,335,341,347,354,360,363,371,374,379,382,384,385,385,386,386,386,387,387,386,386,386,386,387,390,391],[449,450,451,452,452,452,450,449,446,445,444,443,443,443,443,444],[453,453,454,455,456,463,466,468,473,477,479,482,483,484,487,488,489,488,487,483,481,475,473,466,462,460,459,459,460,461,462,466,467,473,474,480,483,485,488,489,490,490,490,487,486,484,482,476,473,468,465,462,460,455,453],[512,512,512,512,513,515,519,521,530,533,536,538,546,549,552,553,555,555,556,555,552,550,544,541,533,528,524,523,520],[600,600,601,602,605,609,614,616,624,627,634,635,640,642,643],[600,601,602,603,604,608,610,615,618,625,628,635,637,643,645,647,649],[691,692,692,692,692,689,688,686,685,684,684,683,683,683],[694,695,700,702,704,712,715,721,723,725,725,725,723,722,717,715,709,707,705,701,698],[771,769,768,766,761,758,748,742,738,735,733,733,733,733,737,739],[782,783,786,787,788,789,791,794,797,800,804,806,811,813,815,817,819,819,820,821,821,821,821,821,822,822,823,824,824,825,825,825,826,826,827,828],[796,797,799,801,803,807,810,818,820,826,827],[858,859,861,862,863,864,867,868,871,874,874,874,874,872,869,866,863,860,858,854,853,851,851],[932,933,934,934,934,933,931,930,927,926,924,922,921,920,919,917,917,916,915,915,915],[943,944,949,952,955,959,961,962,965,966,968,968,966,964,959,954,949,945,941,939,938,936,934],[1013,1012,1010,1008,1007,1006,1004,1002,996,990,987,980,977,977,976,976,976,978,981,983,989,995],[1034,1036,1037,1039,1040,1040,1040,1039,1038,1037,1036,1036,1036,1036,1036],[1041,1041,1039,1039,1039,1039,1042,1043,1049,1053,1057,1059,1063,1064,1064,1064,1063,1060,1058,1055,1054,1053,1052,1051,1050,1050,1050,1050,1052,1053,1057,1059,1061,1065,1067,1069,1070,1070,1069,1067,1065,1064,1059,1057,1054,1049,1046,1044,1042,1038],[1094,1095,1099,1102,1102,1103,1103,1103,1103,1102,1101,1099,1097,1092,1089,1081,1077,1070]],"y":[[207,211,219,224,244,251,272,287,295,318,333,348,354,370,374,385,390,394,395,396],[216,215,213,212,210,208,206,205,205,206,209,211,218,220,228,234,241,244,248,255,259,263,271,274,276,281,284,285],[226,224,221,220,219,217,217,217,220,226,233,238,258,266,292,311,329,337,356,365,368,375,377,380,381,383,383],[345,343,337,330,323,319,305,300,286,280,266,261,257,248,241,238,233,232,230,230,231,237,243,251,261,272,283,288,304,313,320,324,332,336,337],[302,301,299,298,297,297,296,296,296,296,295,295,295,294,294,295,295,296,296],[336,334,327,325,321,311,307,298,294,290,276,267,257,247,239,233,230,227,227,230,235,241,249,257,266,276,286,295,305,315,323,330,333,338,340,339],[247,247,247,249,259,264,284,291,309,315,325,335,338,342,344,345],[257,255,243,242,241,237,235,234,233,232,232,232,232,233,235,236,239,242,243,250,253,263,267,278,285,291,295,296,297,298,298,300,300,303,304,310,315,317,325,327,333,335,337,339,341,342,343,346,347,349,350,351,351,351,351],[214,213,212,211,209,209,209,210,214,217,220,223,234,239,249,254,265,277,288,301,314,320,340,346,363,373,381,384,389],[275,274,274,274,275,275,276,276,276,276,276,276,276,276,276],[311,311,311,311,311,310,310,310,309,308,308,307,307,306,306,305,305],[237,236,237,244,248,264,270,288,293,304,312,316,320,330],[240,239,231,230,229,228,227,227,229,231,235,239,245,247,255,259,266,269,271,275,278],[248,248,250,252,260,265,285,298,311,323,334,337,341,344,350,351],[322,320,309,306,302,298,291,282,274,265,256,252,243,242,241,243,248,252,260,268,273,277,290,294,301,304,310,315,319,322,328,330,334,335,337,337],[287,286,286,286,286,285,284,282,281,280,279],[248,248,247,247,247,248,251,252,257,268,272,282,287,296,305,314,321,327,330,335,336,339,340],[245,245,246,248,251,265,272,278,291,297,303,314,319,325,329,337,341,345,354,359,361],[247,246,242,242,242,242,242,242,244,245,250,252,259,262,270,276,281,286,289,291,292,293,294],[257,257,254,254,254,255,256,258,266,275,279,294,303,307,315,319,327,332,335,336,336,335],[265,265,265,266,268,277,285,293,300,304,311,314,319,321,322],[284,283,275,274,272,271,268,266,262,260,259,258,259,260,262,267,269,276,279,283,285,286,288,289,290,291,292,293,295,296,301,304,306,311,313,317,318,321,322,324,325,326,327,328,330,332,333,334,335,336],[250,249,247,252,255,258,265,270,285,295,304,312,315,325,329,341,345,352]],"t":[[0,8,17,27,33,43,49,60,66,77,83,93,99,110,116,127,133,141,149,154],[457,462,465,466,477,483,493,500,510,516,526,533,543,550,561,566,578,583,583,593,600,600,610,616,617,626,633,643],[1191,1199,1202,1203,1208,1219,1229,1233,1243,1250,1260,1267,1277,1283,1293,1300,1310,1317,1326,1333,1343,1350,1360,1367,1378,1384,1392],[1685,1696,1700,1701,1710,1718,1727,1733,1743,1750,1760,1767,1767,1777,1783,1793,1800,1801,1810,1817,1826,1833,1846,1850,1862,1867,1876,1883,1893,1900,1913,1917,1931,1933,1944],[2201,2217,2220,2222,2225,2234,2246,2250,2251,2260,2267,2267,2277,2284,2294,2300,2311,2317,2325],[2667,2682,2685,2689,2692,2700,2711,2717,2717,2727,2734,2744,2750,2760,2767,2777,2784,2797,2801,2811,2817,2826,2834,2844,2850,2861,2867,2881,2884,2897,2901,2912,2917,2927,2951,2957],[3209,3228,3231,3237,3242,3252,3261,3267,3278,3284,3294,3301,3311,3317,3318,3328],[3539,3557,3560,3561,3568,3576,3584,3584,3594,3601,3611,3618,3618,3628,3634,3645,3652,3661,3667,3676,3684,3694,3701,3711,3717,3727,3734,3744,3751,3751,3761,3768,3777,3784,3794,3801,3812,3817,3830,3834,3846,3851,3851,3860,3868,3868,3878,3884,3885,3895,3901,3902,3912,3918,3922],[4286,4293,4294,4301,4311,4318,4328,4334,4345,4351,4351,4362,4368,4378,4384,4385,4395,4401,4411,4418,4429,4434,4445,4451,4463,4468,4478,4484,4493],[4947,4966,4976,4985,4995,5001,5012,5018,5028,5035,5045,5052,5062,5068,5079],[5261,5291,5297,5306,5309,5314,5322,5328,5335,5345,5351,5362,5368,5376,5385,5385,5395],[5610,5627,5631,5643,5652,5662,5668,5679,5685,5695,5702,5702,5712,5718],[5968,5982,5985,5989,5993,6002,6012,6018,6029,6036,6046,6052,6062,6068,6079,6085,6096,6102,6102,6113,6118],[6495,6512,6519,6520,6530,6535,6546,6552,6562,6569,6579,6585,6586,6594,6602,6610],[6894,6908,6911,6912,6919,6919,6929,6936,6946,6952,6963,6969,6979,6985,6996,7002,7013,7019,7031,7035,7036,7047,7052,7063,7069,7069,7082,7085,7099,7102,7113,7119,7129,7136,7146,7157],[7353,7386,7394,7402,7403,7413,7419,7430,7436,7446,7452],[7735,7753,7756,7761,7769,7769,7777,7786,7796,7802,7813,7819,7820,7830,7836,7847,7853,7864,7869,7881,7886,7897,7902],[8157,8171,8174,8179,8186,8197,8202,8203,8214,8219,8220,8231,8238,8239,8249,8252,8253,8264,8269,8280,8286],[8542,8557,8560,8562,8569,8578,8586,8589,8597,8603,8614,8620,8630,8636,8647,8653,8664,8669,8680,8686,8686,8698,8703],[8919,8937,8940,8945,8948,8953,8953,8963,8969,8980,8986,8997,9003,9014,9019,9020,9031,9036,9047,9053,9064,9070],[9287,9290,9295,9303,9314,9320,9331,9336,9347,9353,9364,9370,9381,9386,9389],[9541,9558,9562,9566,9570,9578,9586,9597,9603,9614,9620,9628,9637,9647,9653,9664,9670,9681,9686,9697,9703,9704,9715,9720,9720,9731,9736,9748,9753,9765,9770,9781,9787,9798,9803,9815,9820,9831,9836,9848,9853,9854,9865,9870,9871,9881,9886,9887,9898,9903],[10087,10105,10108,10111,10120,10122,10132,10137,10148,10153,10164,10170,10183,10187,10196,10203,10214,10220]],"version":"2.0.0"}

    En d'autres termes, la probabilité de l'intersection de deux événements indépendants est le produit des probabilités individuelles.

    Jason et William jouent aux cartes, Jason demande à William de tirer une carte au hasard. William tire une reine et la remet dans le jeu. Jason lui demande de tirer une autre carte et lui demande la probabilité que cette carte soit un roi suivi de la reine précédente. Quelle devrait être la réponse de William ?

    Solution

    Soit A l'événement que la carte tirée soit une reine et B que la deuxième carte tirée soit un roi.

    Il convient de noter que le choix de William comme première carte n'a pas d'importance, les deux événements sont complètement indépendants l'un de l'autre.

    En calculant les probabilités individuelles, on obtient

    PA=PB=452=113

    Comme il y a quatre reines et quatre rois dans un jeu de 52 cartes, nous voulons trouver la probabilité de l'intersection des deux événements, en utilisant le fait que les événements sont indépendants.

    PAB=PA PB=113113=1169.

    Les deux événements suivants sont-ils indépendants ?

    A : Le lever du soleil

    B : Tirer à pile ou face et obtenir un résultat positif.

    Solution

    OUI !

    Les événements A et B sont indépendants car ils n'ont aucun rapport entre eux et la survenue de l'un n'affecte pas l'autre. Le lever du soleil est sans aucun doute indépendant du résultat du jeu de pile ou face.

    Complément d'un événement

    Supposons qu'une pièce de monnaie équitable soit lancée une fois, il y a deux résultats possibles : Pile (P) ou Face (P), avec des probabilités égales. Les deux événements sont exactement l'opposé l'un de l'autre. Si un événement se produit, tous les autres résultats sont appelés événements complémentaires . Si nous obtenons H lorsque nous jouons à pile ou face, tous les autres événements (dans ce cas, T) sont des événements complémentaires.

    Le complément d'un événement, disons A, est le sous-ensemble de l'espace d'échantillonnage qui n'est pas contenu dans A lui-même. Il est notéAc.

    Cela implique que la probabilité du complément sera donnée par tous les éléments qui se trouvent dans l'espace d'échantillonnage à l'exclusion de l'ensemble A.

    AC=S-A{"x":[[109,131,138,146,148,152,155,160,165,170,172,177,183,186,188,189,192,193,196,197,197,198,198,198,197,197,195,194,193,192,192,191,191,192,193,194],[128,130,132,135,145,152,158,161,164,170,173,175,177,185,187,192,194,197,198],[274,273,271,268,263,261,255,252,245,243,241,236,232,230,229,229,230,232,236,239,241,248,259,267],[304,305,306,310,316,323,332,340,349,358,366,375,392,398,404,406],[316,317,321,326,333,337,350,358,366,370,374,377,385,387,390,396,398,402,404],[578,581,582,584,589,591,592,593,593,592,591,585,582,579,572,563,558,547,530,519,514,504,499,492,487,485,484,487,489,498,502,516,522,527,539,544,549,559,567,571,576,578,579,581,581,580,576,570,566,552,547,532,527,513,508,504,497,494],[642,643,646,651,654,661,665,669,679,688,697,702,710,718,725,728,735,737,740,741,741,740,737,736],[829,829,830,830,831,832,836,838,841,844,848,850,859,862,872,875,884,887,890,895,898,899,902,905,906,908,909,909,910,910,909,908,907,907,907,907,908,910,911,912,913,914,915,915,915,916,917,917,918],[862,862,864,866,871,876,883,891,898,905,908,915,917,920]],"y":[[347,271,254,237,233,224,220,212,206,201,198,195,193,194,195,197,203,207,221,233,239,260,267,288,294,307,326,338,350,356,370,374,384,389,392,393],[293,293,293,293,292,291,291,290,290,289,289,289,289,288,288,287,287,286,286],[134,133,131,130,131,132,137,140,149,153,157,166,177,186,193,197,202,206,209,210,211,211,211,209],[267,267,266,265,264,262,261,259,258,256,255,254,252,251,251,251],[321,321,321,320,318,318,315,313,311,311,310,309,308,307,307,306,306,306,306],[240,235,232,228,221,216,214,205,203,195,193,187,186,185,184,184,186,189,197,204,208,217,222,231,240,248,252,262,265,272,274,280,282,284,288,290,291,296,300,303,308,311,313,319,322,328,335,341,344,353,355,361,362,364,364,363,360,358],[284,284,284,285,285,285,285,285,284,283,282,282,281,281,281,281,281,281,282,282,284,284,286,287],[348,347,344,342,337,334,320,315,302,295,279,271,246,237,213,206,186,181,176,167,164,162,160,159,160,163,165,169,179,198,212,228,235,257,265,282,288,302,310,316,323,329,332,335,338,342,347,349,350],[284,285,286,287,288,289,289,288,287,285,285,284,283,283]],"t":[[0,12,17,33,36,44,44,54,61,71,77,88,94,104,111,111,121,127,137,144,154,161,171,177,188,194,204,211,221,227,238,244,254,261,271,278],[794,818,822,828,838,844,854,861,861,871,878,878,888,894,904,911,921,928,928],[1377,1386,1390,1391,1403,1412,1422,1429,1438,1445,1445,1459,1461,1472,1478,1488,1495,1505,1511,1512,1520,1528,1538,1545],[1938,1944,1953,1961,1971,1978,1988,1995,2005,2012,2023,2029,2053,2062,2072,2078],[2291,2328,2337,2345,2355,2362,2372,2379,2393,2395,2395,2409,2412,2412,2421,2428,2429,2439,2445],[2863,2872,2882,2889,2895,2906,2912,2922,2929,2937,2945,2955,2962,2962,2970,2978,2989,2995,3006,3013,3022,3029,3029,3039,3045,3055,3063,3072,3080,3089,3095,3105,3112,3113,3122,3129,3129,3139,3145,3156,3162,3163,3172,3179,3180,3189,3195,3205,3212,3222,3229,3237,3246,3255,3262,3263,3272,3279],[3829,3837,3854,3862,3872,3879,3879,3889,3896,3904,3912,3913,3923,3930,3939,3946,3956,3962,3972,3979,3989,3995,4006,4012],[6730,6735,6738,6740,6747,6756,6763,6772,6780,6781,6790,6797,6807,6813,6824,6833,6843,6847,6847,6857,6863,6864,6874,6880,6890,6897,6897,6907,6913,6924,6931,6940,6947,6957,6963,6974,6980,6991,6997,7008,7013,7024,7030,7031,7041,7047,7059,7064,7074],[7456,7475,7497,7505,7514,7524,7531,7541,7548,7557,7565,7574,7580,7591]],"version":"2.0.0"}

    PAC=PS-PA=1-P(A)

    qui est également connue sous le nom de règle du complément de probabilité.

    Un espace d'échantillonnage est défini par l'ensemble S = {1,2,5,7,8,9} et un sous-ensemble de S est donné par

    A = {2,5,8}. Trouve le complément de l'ensemble A.

    Solution

    D'après la définition du complément d'un ensemble, tous les éléments qui sont dans S mais pas dans A forment l'ensembleAc, qui forme ici l'ensemble {1,7,9}.

    Le complément de A est doncAc = {1,7,9}.

    On lance deux fois une pièce de monnaie et on observe le résultat. Quelle est la probabilité qu'au moins une tête soit observée ?

    Solution

    L'espace d'échantillonnage est donné par S = {HH,HT,TH,TT} et prenons A comme l'ensemble (ou l'événement) constitué des éléments lorsqu'on a plus d'une tête.

    Le complément de cet événement sera "l'événement où l'on a moins d'une tête". D'où Ac sera donné par l'ensemble {TT} car c'est le seul élément de l'espace d'échantillonnage où nous avons moins d'une tête (aucune tête).

    Par conséquent, nous pouvons maintenant utiliser la règle du complément pour calculer sa probabilité

    PA=1-PAC

    PA=1-14=34

    La probabilité d'obtenir au moins 1 tête est donc de 34{"x":[[464,465,466,470,472,478,485,495,498,505,509,513,516,519,519,518,517,511,508,498,491,485,482,476,471,470,469,471,475,479,485,490,495,498,505,507,510,511,511,507,505,494,489,474,469,454,446,442],[387,388,396,400,416,422,440,446,466,473,480,495,501,515,536,547,558,563,575,581,586,587],[486,485,478,477,476,473,471,468,467,464,461,458,457,456,456,459,463,468,475,483,488,502,512,516,525,530,538,545,551,556,558,559],[506,505,504,504,504,504,504,503,503,503,502,501,500,500,500,500,501]],"y":[[115,112,108,105,105,103,103,102,102,101,101,101,103,106,108,115,119,130,134,147,153,159,162,166,170,172,173,174,174,175,176,178,180,182,186,187,191,193,198,202,204,213,217,226,229,236,239,240],[291,289,288,287,286,285,283,282,280,279,278,277,276,275,274,274,274,274,274,275,276,277],[306,307,312,315,318,332,337,347,351,360,370,378,382,393,395,402,405,407,408,409,409,408,407,407,406,405,405,404,404,404,404,404],[362,361,363,369,378,384,390,404,415,421,438,448,456,464,469,472,473]],"t":[[0,5,12,18,28,34,45,51,61,68,68,76,84,95,101,111,118,128,134,145,151,161,168,178,184,195,201,218,228,234,245,251,261,268,278,284,295,301,309,318,328,334,345,351,364,371,378,384],[664,682,693,701,710,718,728,734,745,751,752,760,768,778,785,795,801,811,818,828,835,843],[1065,1081,1084,1085,1093,1101,1111,1118,1118,1128,1135,1145,1151,1165,1168,1178,1185,1193,1201,1210,1218,1228,1235,1245,1251,1252,1264,1268,1282,1285,1295,1301],[1469,1480,1494,1502,1511,1518,1518,1529,1535,1543,1551,1562,1570,1581,1585,1597,1602]],"version":"2.0.0"}.

    Règles de probabilité - Principaux enseignements

    • L'union et l'intersection d'un nombre quelconque d'événements peuvent être reliées par la règle d'addition des probabilités et pour 2 événements A et B, elle est donnée parPAB=PA+PB-P(AB). Pour deux événements disjoints, A et B, la règle de l'addition est donnée par PAB=PA+PB{"x":[[68,69,71,72,74,76,77],[71,70,69,68,68,67,68,71,73,81,84,95,99,109,115,117,121,123,124,124,122,118,104,97,93,82,80,74,73,72],[195,196,197,195,191,186,180,176,162,156,144,136,130,128,126,123,121,121,120,121,123,126,128,133,136,146,149,153],[189,187,184,184,183,183,183,183,185,187,190,192,199,202,210,212,218,220,221,224,228,231,233,234,236,237,238,239,239,239,239,240,241,243,243,245,246],[184,181,180,183,187,190,201,206,221,226,239,242,249,251,252,253],[301,301,300,300,300,300,300,302,302,304,306,309,313,317,319,324,326,329,334,341,343,349,350,355,356,357,358,357,356,356,353,352,351,350,347,346],[394,395,396,397,400,400,402,402,403,403,403,403,402,402,401,401,400,400,399,399,399,399],[390,389,389,390,394,400,403,413,417,426,432,435,437,439,439,438,436,433,429,423,419,416,414,413,413,416,417,423,425,431,433,435,439,441,442,443,445,445,444,444,442,439,433,427,425,422,415,408,405],[468,469,471,472,478,481,486,489,493,495,497,498,497,496,491,489,481,477,468,465,461,455,453,448,445],[534,532,532,533,535,538,543,549,552,555,560,567,568,570,570,569,568,567],[531,533,536,543,546,554,562,566,570,576,579,584,589,593,594,598,599,600],[636,637,638,639,639,640,640,639,638,637,637,636,635,635,635,635,635,636,636,637,638,639],[631,631,634,635,638,640,643,646,651,657,664,668,671,675,675,672,671,664,661,659,654,649,645],[724,727,728,727,724,722,717,707,704,698,696,693,693,694,697,699,704,709,716,724,731],[760,759,758,758,758,758,758,759,760,764,766,768,770,774,777,781,785,788,789,791,793,796,797,800,801,804,805,805,806,806,806,806,806,806,806,805,805,804,804],[762,759,759,758,758,759,760,765,767,774,777,786,789,797,800,803,807,811,813,815,816,817,818],[837,841,845,848,851,853,854,858,859,860,860,859,857,855,851,849,846,840,838,835,831,829,827,823,821],[886,888,893,895,898,905,908,912,919,923,926,932,935,938,941,942],[910,912,913,914,915,915,917,917,918,918,918,918,918,918,918,918,918],[972,972,973,973,972,971,970,969,969,968,967,966,966,966,966,967,967,967,967,968],[968,970,973,977,979,981,989,991,994,998,1001,1003,1003,1003,1001,998,994,987,982,979,977],[1046,1045,1042,1041,1040,1037,1033,1030,1028,1027,1026,1025,1024,1024,1025,1027,1032,1036,1041,1043],[1065,1064,1063,1063,1062,1062,1061,1060,1060,1059,1058,1057,1057,1056,1056,1056],[1064,1064,1064,1065,1067,1071,1073,1079,1081,1083,1087,1090,1091,1092,1092,1090,1088,1085,1080,1076,1072,1070,1067,1067,1067,1068,1072,1073,1079,1083,1087,1090,1091,1093,1094,1094,1095,1095,1094,1093,1090,1087,1086,1079,1077,1072],[1119,1123,1124,1126,1127,1128,1129,1129,1130,1131,1131,1130,1127,1125,1116,1113,1102,1098,1087,1084]],"y":[[176,176,372,374,376,376,375],[181,181,180,180,179,178,178,174,173,169,168,166,166,167,170,172,177,180,186,193,202,210,228,236,240,249,250,253,253,253],[202,200,199,200,202,206,212,215,231,239,259,273,289,296,304,319,327,333,339,350,360,368,371,376,377,378,378,377],[328,325,319,317,308,304,295,290,279,269,258,253,237,233,221,218,212,211,210,211,213,218,224,227,236,250,260,271,282,293,298,311,315,325,327,331,331],[271,271,271,270,269,269,266,264,259,257,253,252,250,250,250,249],[241,244,251,255,259,267,271,284,288,292,301,309,313,315,316,316,315,314,311,302,299,286,281,268,263,249,245,234,231,228,223,221,218,216,211,209],[226,226,227,228,236,240,254,259,273,278,282,291,295,299,307,311,314,318,323,327,329,325],[238,231,229,224,219,214,212,206,204,202,202,204,205,210,215,218,224,230,236,247,253,258,264,268,270,276,277,283,284,290,292,294,298,299,301,303,306,310,314,316,318,322,328,332,333,335,337,338,338],[181,181,183,185,194,199,210,216,227,238,250,257,274,280,298,303,320,326,339,343,347,353,355,358,359],[240,240,239,239,239,239,238,238,238,237,237,237,237,238,239,241,243,244],[289,288,287,284,283,281,279,279,278,277,277,276,275,274,273,272,272,272],[196,194,196,199,206,211,224,239,247,262,269,285,291,309,314,326,329,337,339,340,341,341],[218,209,201,199,198,197,196,195,194,194,196,199,201,208,211,219,222,231,233,236,241,245,248],[206,204,203,206,210,213,220,238,244,266,273,292,298,314,322,325,331,334,335,335,334],[320,315,312,308,300,293,284,274,269,252,247,242,238,229,225,220,217,216,216,219,224,235,240,254,259,273,277,283,287,296,300,304,312,315,318,324,327,329,330],[282,280,279,278,277,277,277,276,275,273,273,271,271,269,269,268,267,267,267,266,266,266,267],[200,198,202,205,212,217,222,239,251,264,277,288,301,306,316,321,326,336,340,344,350,353,354,357,358],[268,268,266,266,265,265,264,264,263,263,263,263,263,263,262,262],[238,237,237,239,241,243,252,256,260,268,272,276,280,287,290,293,297],[206,207,208,210,213,233,240,262,269,290,303,315,324,328,336,340,342,347,348,351],[224,217,213,211,210,209,208,208,209,211,214,218,223,225,231,236,242,250,254,258,259],[232,232,233,234,236,242,251,262,273,279,285,301,306,319,322,327,331,332,333,332],[238,239,243,251,256,261,266,280,289,298,305,311,316,318,320,321],[251,243,239,235,233,227,225,221,221,220,220,220,222,225,227,233,236,241,249,254,259,262,268,269,273,274,277,278,282,285,289,292,294,298,300,301,305,309,312,315,318,320,321,323,323,323],[203,206,211,220,236,241,252,258,271,284,296,308,321,326,344,349,364,368,378,380]],"t":[[0,2,9,9,20,25,32],[439,443,449,451,458,469,474,485,492,502,509,522,524,535,541,551,558,558,568,575,585,592,608,618,625,635,642,651,658,666],[872,888,891,908,918,926,935,941,952,958,968,975,987,991,992,1000,1008,1008,1017,1025,1035,1041,1042,1051,1058,1068,1075,1079],[1294,1310,1313,1318,1325,1335,1342,1342,1352,1358,1369,1375,1387,1392,1402,1409,1418,1425,1425,1437,1442,1452,1459,1469,1475,1483,1492,1502,1512,1521,1525,1535,1541,1552,1559,1569,1575],[1769,1785,1788,1793,1802,1808,1819,1825,1836,1843,1852,1859,1869,1875,1875,1886],[2120,2138,2141,2143,2147,2150,2158,2169,2175,2175,2186,2192,2202,2208,2219,2225,2226,2236,2242,2252,2259,2271,2275,2286,2292,2304,2309,2317,2325,2326,2336,2342,2342,2352,2358,2371],[2544,2559,2568,2575,2586,2593,2603,2609,2619,2625,2625,2636,2642,2642,2653,2659,2659,2667,2675,2686,2692,2709],[2836,2846,2849,2850,2859,2869,2876,2886,2893,2902,2909,2919,2925,2936,2942,2953,2959,2969,2975,2986,2992,3003,3010,3019,3026,3035,3042,3052,3059,3070,3075,3076,3088,3092,3093,3103,3109,3121,3126,3126,3137,3142,3153,3159,3168,3174,3177,3186,3193],[3378,3394,3397,3402,3415,3420,3426,3426,3434,3442,3453,3459,3470,3476,3486,3492,3503,3513,3522,3526,3526,3536,3542,3553,3559],[3810,3825,3829,3842,3853,3859,3867,3876,3876,3886,3892,3903,3910,3920,3926,3936,3942,3946],[4091,4118,4126,4136,4142,4151,4159,4160,4170,4176,4176,4187,4193,4204,4209,4220,4227,4234],[4428,4445,4448,4452,4459,4460,4471,4477,4487,4493,4493,4504,4513,4523,4526,4536,4544,4554,4559,4560,4571,4576],[4731,4748,4752,4753,4759,4760,4768,4768,4776,4787,4794,4803,4811,4820,4826,4837,4843,4854,4859,4860,4871,4876,4887],[5053,5069,5073,5085,5093,5103,5110,5121,5127,5137,5144,5154,5160,5171,5176,5187,5193,5204,5210,5221,5226],[5411,5427,5431,5435,5443,5454,5460,5471,5476,5487,5493,5493,5504,5510,5510,5525,5527,5535,5543,5554,5560,5571,5577,5587,5593,5604,5610,5610,5621,5626,5627,5638,5643,5644,5655,5660,5660,5668,5677],[5807,5818,5822,5827,5830,5838,5843,5854,5860,5871,5877,5888,5894,5905,5910,5910,5921,5927,5938,5943,5943,5955,5960],[6137,6155,6159,6160,6168,6169,6177,6187,6193,6204,6210,6221,6227,6238,6243,6244,6255,6260,6260,6272,6277,6277,6288,6293,6296],[6507,6525,6528,6535,6536,6543,6544,6554,6560,6560,6572,6577,6577,6588,6594,6605],[6746,6757,6761,6766,6769,6777,6788,6793,6794,6805,6810,6811,6822,6827,6827,6839,6844],[7040,7050,7054,7055,7060,7071,7078,7088,7094,7103,7110,7121,7127,7138,7144,7144,7156,7160,7161,7172],[7345,7357,7361,7369,7369,7377,7389,7394,7394,7406,7410,7422,7427,7435,7444,7454,7460,7472,7477,7489,7494],[7666,7682,7686,7687,7694,7702,7711,7721,7727,7728,7739,7744,7756,7761,7772,7777,7788,7794,7805,7811],[7997,8015,8018,8020,8027,8028,8037,8044,8055,8061,8072,8077,8089,8094,8105,8111],[8233,8249,8253,8254,8261,8270,8278,8289,8294,8295,8304,8311,8322,8327,8339,8344,8352,8361,8372,8378,8389,8394,8405,8411,8422,8428,8439,8445,8452,8461,8471,8477,8489,8494,8495,8505,8513,8522,8531,8541,8545,8555,8561,8572,8578,8586],[8763,8777,8781,8782,8794,8805,8811,8811,8821,8828,8839,8844,8856,8861,8872,8878,8889,8894,8906,8911]],"version":"2.0.0"}.
    • Pour deux événements quelconques, A et B, la règle de probabilité du produit est donnée par PAB=PA|BPB{"x":[[28,28,28,28,29,29,29,29,28,27,26,26,26,26,26,26,27,27,28,28,30,30,31,32],[19,18,16,15,15,15,21,24,36,40,51,55,63,65,66,67,69,70,70,70,66,62,58,55,47,44,37,35,31],[109,104,99,97,94,92,87,84,73,69,67,67,66,67,70,74,78,80,83,88,90,93,96,102],[112,111,110,111,112,112,113,113,114,116,117,118,121,125,130,137,140,147,149,153,154,158,159,160,162,163,164,164,164,164,164,164,164,164,164,163,163,163,163],[116,112,110,111,115,118,123,129,136,140,144,150,159,161],[191,188,186,186,186,186,187,188,189,191,193,196,200,208,213,218,220,226,227,231,232,235,235,237,238,238,238,238,238,238,238,238,239,240,241],[281,280,280,280,280,281,282,282,282,282,281,280,280,279,279,279,279,280,281],[275,274,272,271,270,270,271,276,277,279,283,285,288,292,294,297,300,304,307,308,308,307,306,301,299,293,291,287,285,285,285,286,288,290,292,296,298,304,309,314,316,321,322,324,324,323,322,320,317,314,307,301,298,292],[337,339,341,345,347,349,355,358,360,361,362,363,363,363,363,362,361,358,355,348,345,338,335,327,325,318],[395,397,398,405,411,418,425,428,436,439,446,447,451,452,452],[393,396,398,407,413,420,426,428,433,435,439,440,441,442,442],[502,502,503,503,504,504,504,504,502,501,500,499,498,498,497,497,497,497,498],[502,501,501,503,504,505,509,514,515,521,523,528,529,531,531,531,530,527,522,520,517,514,508,506,503,497,493,491],[601,599,598,597,596,590,587,584,578,573,568,565,563,560,559,558,558,559,561,563,567,572,577,580,590,593,601],[625,625,625,626,628,629,632,634,635,637,640,641,642,646,647,651,655,658,659,661,662,664,664,667,668,668,669,670,671,671,671,671,671,671,670,670,669,669,668],[642,640,639,640,644,648,653,659,664,668,671,671],[700,701,702,703,704,704,704,704,703,703,702,702,701,700,700,699,699,698,698,698,698],[738,739,740,741,742,743,743,744,744,745,745,745,745,745,745,743,743,742,742],[746,745,744,745,746,748,750,753,754,758,760,761,765,768,768,769,769,769,767,766,763,762,758,755,752,751,751,750,750,750,751,753,755,758,762,767,771,775,777,782,783,785,785,785,785,784,783,780,778,776,772,769,767,763,761,759],[784,787,788,791,795,799,804,807,813,815,818,819,819,819,818,817,813,812,810,805,803,798,793,789,786],[870,870,870,870,870,870,870,870,870,869,869,869,869,868,868,868,868,868,869,869,870,870],[864,866,867,869,873,876,880,885,889,891,893,894,894,894,892,891,886,884,879,876,874,872,871],[941,940,937,936,933,931,929,924,919,916,914,914,912,912,912,912,912,912,914,917,918,921,922,924,928,930,932,937,939,943],[959,959,959,959,959,959,959,959,959,959,959,959,959,960],[957,957,958,959,960,962,967,969,972,976,979,980,982,982,982,982,980,978,977,975,973,972,969,967,966,963,963,963,964,967,970,972,977,982,986,990,993,995,996,999,1000,1000,1001,1001,1000,999,998,995,993,987,985,978,975,967],[1012,1013,1014,1016,1019,1023,1027,1029,1035,1037,1040,1041,1041,1039,1036,1035,1033,1030,1028,1026,1025,1022,1020,1017,1015]],"y":[[231,229,227,226,227,228,232,241,251,272,288,296,313,322,340,356,371,382,393,397,410,412,418,419],[236,234,232,229,225,222,215,212,205,205,205,207,212,214,217,219,225,228,231,238,249,257,265,269,281,284,294,296,301],[246,245,245,247,249,252,260,266,299,313,327,334,354,360,373,380,386,388,390,393,394,394,394,393],[361,357,353,344,341,337,334,325,317,307,301,296,286,275,267,258,256,253,253,258,260,270,274,278,286,291,305,315,320,331,336,340,349,353,357,363,366,370,372],[320,320,321,321,320,319,317,315,313,312,311,309,307,307],[355,355,353,351,347,344,340,333,329,319,308,296,283,268,261,254,252,249,249,252,254,264,268,281,291,295,308,313,321,333,340,342,346,348,349],[268,268,269,270,274,282,286,296,307,317,326,334,339,345,349,353,354,355,352],[277,276,274,270,269,263,261,254,252,250,247,246,244,243,243,243,244,247,250,254,260,266,270,280,285,295,298,306,309,311,313,314,315,315,316,316,316,317,319,321,322,326,327,332,333,338,340,342,347,349,354,358,359,361],[224,222,222,225,227,230,240,248,258,264,270,282,294,300,311,321,331,340,349,362,365,376,379,386,387,389],[286,285,285,284,283,282,282,282,282,282,282,282,283,284,285],[319,318,317,316,315,314,313,312,311,311,311,311,311,311,312],[241,242,245,252,263,269,281,294,311,323,329,338,346,353,360,362,365,366,366],[247,242,238,235,233,232,230,227,227,228,229,235,237,246,249,252,258,264,271,274,277,279,285,287,289,292,293,293],[231,230,230,230,231,237,240,245,256,268,282,289,297,311,319,333,346,356,365,369,374,378,381,382,383,382,381],[329,328,327,326,320,317,304,299,294,288,277,272,267,257,252,244,238,235,234,235,236,244,248,261,266,270,278,286,293,299,306,309,314,318,323,326,327,329,330],[285,285,285,285,284,284,282,280,279,277,277,276],[238,235,233,234,238,246,251,269,283,290,302,311,320,326,333,336,342,347,350,351,352],[251,252,252,256,264,274,286,291,296,305,314,318,324,327,329,335,338,339,340],[261,257,255,253,252,250,248,246,245,244,244,244,244,246,248,251,252,254,258,260,267,269,277,281,286,287,288,290,292,293,293,295,295,296,297,298,299,301,302,306,308,313,314,319,321,323,325,328,330,331,334,336,337,339,340,340],[221,221,221,223,226,232,240,244,258,263,278,283,288,293,307,312,321,326,330,338,342,350,356,361,365],[240,241,247,257,263,279,284,289,299,308,316,320,323,329,334,338,340,343,345,346,345,342],[244,241,240,238,236,236,235,235,236,237,241,245,249,251,258,259,265,266,271,273,275,277,278],[241,241,241,241,242,244,245,251,259,269,278,283,296,300,304,310,313,316,320,323,325,327,328,328,328,328,327,326,325,322],[255,262,273,281,290,294,303,306,314,315,317,320,321,321],[261,257,253,252,251,249,246,245,244,244,244,245,248,250,254,256,261,265,268,272,274,276,281,283,284,288,289,290,290,290,290,290,290,290,291,292,295,297,299,302,306,307,311,313,314,318,320,323,324,328,329,331,331,332],[233,233,232,231,233,236,241,245,258,263,277,282,296,305,314,319,322,330,334,337,341,347,350,355,358]],"t":[[0,7,12,14,30,41,47,58,63,74,81,91,97,97,108,114,124,131,141,147,158,163,174,180],[426,426,431,431,441,448,458,465,474,480,491,497,508,513,514,524,530,531,540,547,557,565,574,581,590,597,607,615,624],[1094,1110,1113,1115,1122,1123,1130,1141,1158,1165,1172,1180,1191,1197,1207,1214,1224,1230,1231,1241,1247,1248,1257,1264],[1499,1516,1519,1523,1530,1531,1541,1547,1558,1564,1564,1574,1581,1591,1597,1609,1614,1626,1631,1639,1647,1658,1664,1664,1675,1681,1695,1697,1709,1714,1714,1727,1731,1731,1743,1747,1748,1758,1764],[1951,1966,1969,1989,1997,2008,2014,2025,2031,2031,2041,2047,2058,2065],[2391,2407,2410,2415,2425,2431,2431,2441,2448,2458,2464,2475,2481,2491,2499,2508,2514,2525,2531,2543,2548,2561,2564,2575,2581,2590,2598,2608,2615,2628,2632,2644,2648,2648,2656],[2849,2864,2881,2882,2892,2898,2908,2914,2925,2931,2939,2948,2948,2959,2965,2975,2981,2992,3008],[3124,3130,3133,3142,3148,3159,3165,3175,3181,3182,3192,3198,3198,3209,3214,3225,3231,3242,3248,3259,3266,3277,3281,3292,3299,3309,3315,3326,3331,3344,3348,3359,3365,3365,3376,3381,3382,3395,3398,3409,3415,3425,3431,3442,3448,3457,3465,3465,3473,3481,3492,3498,3510,3515],[3701,3715,3719,3720,3725,3732,3742,3748,3759,3765,3765,3776,3781,3792,3798,3811,3815,3826,3831,3842,3848,3859,3865,3876,3883,3890],[4238,4265,4274,4281,4292,4300,4309,4315,4326,4332,4343,4348,4357,4365,4375],[4538,4565,4575,4582,4592,4599,4609,4615,4626,4633,4643,4649,4662,4665,4676],[4913,4932,4941,4948,4959,4965,4976,4982,4990,4999,5009,5015,5024,5032,5042,5049,5061,5065,5076],[5293,5308,5311,5312,5317,5326,5332,5343,5350,5360,5366,5376,5382,5393,5399,5399,5410,5415,5427,5432,5432,5443,5449,5449,5460,5467,5476,5482],[6246,6253,6257,6261,6266,6277,6282,6283,6294,6299,6310,6316,6316,6327,6332,6343,6349,6360,6366,6366,6377,6383,6394,6399,6411,6416,6424],[11642,11651,11662,11668,11679,11684,11696,11701,11701,11713,11718,11718,11729,11734,11735,11744,11751,11762,11768,11779,11785,11796,11802,11812,11820,11821,11831,11835,11846,11851,11860,11868,11879,11884,11896,11901,11902,11913,11918],[12136,12144,12151,12178,12185,12195,12203,12212,12218,12229,12235,12246],[12682,12697,12701,12710,12718,12729,12735,12746,12751,12760,12768,12779,12785,12796,12801,12802,12813,12821,12832,12835,12846],[13154,13165,13168,13169,13177,13185,13196,13202,13202,13214,13218,13230,13235,13235,13247,13252,13263,13268,13280],[13471,13484,13489,13490,13496,13502,13513,13518,13530,13535,13536,13543,13552,13562,13570,13580,13585,13588,13597,13602,13613,13619,13630,13635,13647,13652,13652,13664,13669,13669,13681,13685,13686,13697,13703,13713,13719,13730,13735,13747,13752,13763,13769,13780,13785,13786,13797,13802,13803,13814,13821,13822,13832,13835,13836,13847],[14154,14163,14166,14169,14181,14186,14197,14202,14214,14219,14230,14235,14236,14248,14252,14263,14269,14269,14281,14286,14286,14297,14302,14313,14319],[15192,15211,15219,15231,15236,15247,15252,15253,15265,15269,15281,15286,15286,15298,15302,15311,15319,15330,15336,15344,15362,15369],[15583,15593,15597,15598,15604,15614,15619,15631,15636,15636,15648,15653,15664,15669,15681,15686,15697,15703,15714,15719,15727,15736,15748],[16060,16074,16077,16083,16087,16094,16095,16104,16111,16120,16130,16136,16148,16153,16154,16165,16169,16170,16182,16186,16198,16203,16203,16215,16219,16220,16232,16236,16237,16248],[16530,16546,16549,16555,16564,16570,16581,16587,16598,16603,16603,16613,16620,16632],[16801,16816,16819,16821,16834,16836,16848,16854,16865,16870,16881,16886,16895,16903,16914,16920,16931,16936,16948,16953,16954,16963,16970,16970,16980,16988,16998,17004,17015,17020,17032,17036,17048,17053,17065,17070,17081,17086,17087,17097,17103,17115,17120,17121,17130,17136,17137,17147,17153,17165,17170,17182,17187,17198],[17416,17424,17427,17437,17448,17454,17465,17470,17482,17487,17498,17504,17515,17520,17532,17537,17537,17547,17553,17554,17564,17570,17570,17580,17587]],"version":"2.0.0"} et cette loi peut être étendue à un nombre quelconque d'événements de la même manière.
    • On dit que deux événements sont indépendants l'un de l'autre si la survenue de l'un n'affecte pas la survenue de l'autre, et il en va de même pour n'importe quel nombre d'événements.
    • Si deux événements sont indépendants l'un de l'autre, leur règle de produit est donnée par PAB=PAPB{"x":[[148,148,148,148,148,149,149,152,154,156,157,158,159,159,160,159,158,158,157,156,155],[166,164,162,159,157,156,153,151,150,150,151,155,158,168,171,175,183,188,192,195,203,210,214,217,218,217,213,208,205,196,192,186,184,182],[271,270,267,265,261,258,255,248,236,228,223,221,217,217,219,221,226,228,235,237,238],[263,260,259,258,258,260,261,263,266,268,271,276,278,281,287,290,295,300,302,307,311,314,316,317,318,319,319,318,317,315,314,313,313,312,312,312,311],[267,266,267,269,271,281,289,293,303,305,310,311,313],[365,363,363,363,364,366,369,370,372,374,379,383,389,391,397,402,407,410,416,418,423,425,427,428,429,429,429,429,428,428,428,428],[468,467,466,466,466,467,468,469,469,470,468,468,467,466,466],[462,460,460,459,463,465,472,477,484,487,490,496,501,503,506,507,508,509,509,509,507,503,499,495,494,489,488,485,485,486,487,488,491,493,495,497,501,506,509,512,513,513,512,508,506,498,494,484,480,472],[533,537,544,546,552,554,557,561,563,565,566,567,566,564,563,557,555,548,545,537,534,530],[612,613,616,621,627,632,636,638,643,644,646],[589,588,588,588,590,594,600,607,611,614,620,623,628],[677,678,678,679,680,680,680,680,679,678,677,676,676,675,674,673,673,673,673,674],[664,664,666,667,670,675,682,684,687,689,690,693,694,695,695,696,695,694,691,689,681,679,676,672,671],[751,749,747,746,744,743,742,738,736,731,726,721,719,714,713,711,711,712,713,714],[769,768,768,768,771,774,776,783,788,792,797,801,802,803,808,809,810,810,810,810,810,810,811,811,811,811,811,811,810,810,810],[775,775,775,775,775,775,775,776,780,784,787,794,801,810,814,818,819],[850,853,857,859,861,865,866,870,872,873,873,874,874,873,871,869,867,860,855,852,848,844],[904,904,903,903,903,904,904,904,903,903,902,901],[905,905,904,904,907,909,916,918,921,927,930,933,936,941,943,944,947,948,948,947,945,943,941,935,933,924],[1000,999,997,996,993,991,989,985,982,978,974,971,970,969,968,968,969,971,972,976,979,981,987,990,993,997,1000],[1029,1029,1029,1029,1029,1029,1029,1028,1028,1026,1025,1023,1023,1022,1021,1020,1020,1019],[1019,1019,1019,1020,1023,1025,1030,1032,1038,1043,1047,1050,1052,1052,1051,1050,1046,1044,1039,1037,1035,1034,1032,1031,1031,1032,1033,1035,1037,1040,1042,1045,1046,1047,1048,1047,1047,1044,1043,1041,1038,1036,1034,1029,1027,1025,1022,1019],[1089,1093,1094,1097,1101,1106,1109,1110,1112,1112,1111,1110,1104,1097,1090,1080,1075,1065,1061]],"y":[[239,238,237,248,254,261,270,299,321,343,368,382,416,427,453,459,472,475,476,475,471],[250,249,248,245,244,243,240,236,234,231,230,225,223,217,215,214,211,211,211,212,215,220,226,234,243,256,266,277,282,297,302,311,313,315],[220,215,214,215,220,223,228,242,270,292,311,321,352,361,388,396,414,418,425,426,426],[374,367,364,351,347,330,323,316,302,294,287,273,268,263,256,253,251,252,254,259,267,277,289,301,313,326,331,349,355,369,373,377,383,384,386,387,387],[323,322,319,318,317,313,310,309,306,305,303,303,303],[366,363,361,357,351,341,329,322,315,307,291,278,266,261,254,249,246,245,248,250,262,268,286,299,311,323,334,343,352,359,364,368],[261,263,265,266,269,278,283,302,308,321,345,352,363,368,372],[267,261,258,253,246,244,239,237,235,235,234,235,236,238,241,244,246,252,255,258,266,278,286,294,297,306,310,316,318,324,325,326,328,329,330,331,332,334,336,341,344,348,353,359,362,370,373,380,381,384],[214,209,210,213,219,223,228,239,245,259,275,289,297,318,324,343,349,366,371,385,388,394],[287,286,283,283,283,283,283,283,284,284,285],[334,333,332,331,330,329,327,325,324,324,322,322,322],[243,241,240,242,248,253,258,273,290,307,323,337,343,355,365,373,376,382,384,385],[277,269,260,257,255,250,246,245,245,246,248,252,254,256,261,264,269,274,279,282,291,294,297,301,303],[253,253,252,251,251,251,251,254,257,265,277,292,300,325,333,356,363,378,381,383],[343,333,320,316,302,289,284,268,258,252,247,244,244,244,255,260,272,279,287,300,306,318,328,336,339,347,349,352,357,358,359],[307,306,305,304,303,302,301,301,299,298,297,296,295,295,295,295,295],[228,223,222,223,225,230,234,242,253,260,267,274,295,301,313,319,324,340,351,359,365,370],[248,254,267,286,292,310,316,331,341,351,359,365],[267,262,255,253,249,247,244,243,242,242,242,243,244,247,249,250,254,256,261,266,273,276,280,287,290,299],[236,233,233,234,238,241,245,255,262,276,292,308,315,322,335,341,355,358,361,366,367,368,369,370,370,369,368],[267,265,266,268,276,280,286,299,306,326,332,345,349,352,358,361,363,365],[279,274,271,268,265,264,261,260,258,258,258,260,262,264,271,274,282,285,294,297,299,302,306,308,309,313,315,317,318,321,323,326,328,334,337,345,347,353,355,357,359,361,362,364,365,365,366,366],[234,232,232,236,244,255,268,275,299,307,332,340,362,376,390,403,410,421,426]],"t":[[0,5,10,37,42,43,54,59,71,76,87,93,104,109,120,126,137,144,154,159,171],[940,945,956,960,962,970,976,987,994,1003,1010,1020,1026,1037,1043,1043,1053,1059,1060,1070,1076,1087,1093,1103,1110,1120,1127,1136,1143,1153,1160,1170,1176,1180],[1361,1378,1381,1386,1393,1393,1404,1410,1420,1427,1437,1443,1453,1460,1468,1476,1485,1493,1503,1510,1514],[1737,1746,1751,1753,1760,1769,1776,1778,1787,1793,1793,1804,1810,1810,1820,1826,1835,1843,1844,1853,1860,1870,1878,1887,1894,1904,1913,1924,1927,1937,1943,1944,1954,1960,1960,1970,1977],[2157,2173,2176,2177,2185,2193,2204,2210,2220,2227,2237,2243,2244],[2529,2538,2541,2545,2554,2560,2571,2577,2577,2587,2593,2604,2610,2610,2623,2627,2637,2644,2654,2660,2673,2677,2687,2695,2706,2710,2721,2727,2737,2745,2753,2761],[2954,2961,2971,2977,2977,2988,2993,3004,3010,3021,3036,3038,3044,3052,3067],[3224,3229,3235,3244,3254,3261,3271,3277,3288,3294,3294,3305,3310,3321,3327,3327,3338,3344,3344,3355,3360,3371,3377,3388,3394,3404,3411,3421,3428,3438,3444,3444,3452,3460,3461,3471,3477,3488,3494,3505,3512,3521,3527,3538,3544,3557,3561,3572,3577,3585],[3773,3779,3783,3788,3794,3794,3805,3811,3811,3822,3827,3838,3845,3855,3862,3871,3878,3888,3894,3905,3913,3925],[4238,4254,4257,4262,4271,4278,4288,4294,4305,4311,4321],[4497,4503,4506,4512,4521,4527,4538,4544,4544,4555,4561,4561,4572],[4775,4790,4793,4803,4811,4812,4822,4828,4838,4844,4855,4861,4861,4872,4878,4889,4895,4905,4915,4925],[5067,5083,5086,5088,5094,5103,5111,5122,5128,5128,5139,5144,5145,5156,5161,5161,5172,5178,5189,5194,5205,5211,5212,5222,5228],[5418,5428,5432,5436,5444,5445,5453,5461,5462,5472,5479,5486,5495,5505,5512,5522,5529,5539,5545,5545],[5747,5762,5765,5770,5778,5789,5794,5806,5811,5822,5828,5839,5845,5845,5864,5870,5878,5879,5889,5895,5895,5906,5914,5926,5928,5936,5937,5946,5955,5962,5966],[6115,6120,6123,6128,6130,6137,6145,6145,6156,6161,6173,6178,6189,6195,6206,6212,6219],[6385,6400,6403,6408,6412,6420,6420,6428,6439,6445,6445,6456,6462,6473,6478,6479,6490,6495,6506,6512,6523,6529],[6734,6750,6754,6762,6772,6778,6790,6795,6806,6812,6823,6828],[6984,6993,7006,7012,7023,7029,7040,7045,7046,7057,7062,7062,7074,7078,7079,7091,7095,7096,7107,7112,7123,7128,7131,7140,7145,7157],[7347,7363,7367,7371,7379,7379,7390,7395,7396,7407,7412,7423,7429,7430,7440,7445,7456,7462,7465,7470,7479,7479,7490,7495,7496,7507,7510],[7676,7686,7695,7697,7707,7712,7715,7724,7729,7740,7746,7757,7762,7762,7774,7779,7779,7791],[7934,7938,7945,7956,7962,7973,7979,7979,7991,7996,8007,8012,8023,8029,8040,8046,8057,8063,8074,8079,8079,8091,8096,8096,8107,8116,8124,8129,8129,8141,8146,8157,8162,8174,8179,8190,8195,8207,8212,8213,8224,8229,8230,8241,8245,8246,8257,8262],[8430,8439,8442,8447,8456,8463,8474,8479,8491,8496,8507,8512,8524,8529,8541,8546,8557,8562,8563]],"version":"2.0.0"}.
    • Lecomplément d'un événement, disons A, est le sous-ensemble de l'espace d'échantillonnage qui n'est pas contenu dans A lui-même. Il est notéAc. Un événement et son complément sont liés par l'équation, PA=1-PAC.
    Apprends plus vite avec les 0 fiches sur La règle du produit des probabilités

    Inscris-toi gratuitement pour accéder à toutes nos fiches.

    La règle du produit des probabilités
    Questions fréquemment posées en La règle du produit des probabilités
    Qu'est-ce que la règle du produit des probabilités?
    La règle du produit des probabilités permet de trouver la probabilité que deux événements indépendants se produisent ensemble.
    Comment utilise-t-on la règle du produit des probabilités?
    On multiplie les probabilités de chaque événement indépendant. Par exemple, pour A et B, P(A et B) = P(A) * P(B).
    Quand utilise-t-on la règle du produit des probabilités?
    On l'utilise pour calculer la probabilité de la conjonction de deux événements indépendants.
    Qu'est-ce qu'un événement indépendant en probabilité?
    Deux événements sont indépendants si la réalisation de l'un n'affecte pas la probabilité de l'autre.
    Sauvegarder l'explication

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 15 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !