Test T apparié

Et si tu voulais vérifier si un vaccin a réduit le nombre d'anticorps chez les patients. Comment ferais-tu pour tester cela ? Tu ne serais probablement pas intéressé par le nombre moyen d'anticorps chez chaque patient, mais plutôt par la différence entre le nombre d'anticorps avant et après l'administration d'un vaccin. Comme tu vérifies deux fois des informations sur la même personne, ce test est connu sous le nom de test apparié. En particulier, si l'échantillon de patients testés est petit ou si la variance réelle des différences est inconnue, tu devras utiliser un test\(t\) apparié.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu prélèves des échantillons sur la même personne avant et après un traitement médical, quel type de test pourrais-tu utiliser ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu as un groupe de contrôle et un groupe de traitement, quel type de test pourrais-tu utiliser ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu as des jumeaux et que l'un d'entre eux fait partie du groupe de contrôle et l'autre du groupe de traitement, quel type de test pourrais-tu utiliser ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque tu as des échantillons indépendants, quel type de test peux-tu faire ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque tes échantillons sont dépendants, quel type de test pourrais-tu faire ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si la taille de ton échantillon est de \(13\) et que tu effectues un test de \(t\) par paires, combien y a-t-il de degrés de liberté ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose que tu aies \(15\) élèves et que tu les interroges sur leurs habitudes d'étude avant et après la présentation d'un nouvel outil d'apprentissage. Pour le test par paires, quelle est la taille de l'échantillon ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lesquels des éléments suivants sont nécessaires pour effectuer un test de jumelage ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lesquels des éléments suivants sont de bonnes indications que tu dois utiliser un test d'\(t\N) ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Ton lieu de travail pense que les travailleurs à distance ne sont pas aussi productifs que les travailleurs en personne. Ils aimeraient mettre en place un test par paires pour vérifier cette croyance. Lequel des éléments suivants serait approprié ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu prélèves des échantillons sur la même personne avant et après un traitement médical, quel type de test pourrais-tu utiliser ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu as un groupe de contrôle et un groupe de traitement, quel type de test pourrais-tu utiliser ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si tu as des jumeaux et que l'un d'entre eux fait partie du groupe de contrôle et l'autre du groupe de traitement, quel type de test pourrais-tu utiliser ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque tu as des échantillons indépendants, quel type de test peux-tu faire ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lorsque tes échantillons sont dépendants, quel type de test pourrais-tu faire ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Si la taille de ton échantillon est de \(13\) et que tu effectues un test de \(t\) par paires, combien y a-t-il de degrés de liberté ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Suppose que tu aies \(15\) élèves et que tu les interroges sur leurs habitudes d'étude avant et après la présentation d'un nouvel outil d'apprentissage. Pour le test par paires, quelle est la taille de l'échantillon ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lesquels des éléments suivants sont nécessaires pour effectuer un test de jumelage ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Lesquels des éléments suivants sont de bonnes indications que tu dois utiliser un test d'\(t\N) ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Ton lieu de travail pense que les travailleurs à distance ne sont pas aussi productifs que les travailleurs en personne. Ils aimeraient mettre en place un test par paires pour vérifier cette croyance. Lequel des éléments suivants serait approprié ?

Afficer la réponse

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Tables des matières
Table des mateères

    Hypothèses du test t pour paires

    Il est important de savoir quand tu as besoin d'un test apparié plutôt que d'un test plus standard. Si

    • tu contrôles une personne avant et après un traitement, ou

    • tu utilises un jumeau comme témoin et l'autre comme sujet du test,

    tu utiliseras alors un test apparié.

    Dans une expérience par paires, tu t'intéresses à la différence entre les résultats, plutôt qu'aux résultats eux-mêmes.

    Supposons que ton école te fasse passer un pré-test, qu'elle t'enseigne ensuite les informations, puis qu'elle te fasse passer l'examen proprement dit. L'école essaie de voir si l'enseignement est réellement efficace. En d'autres termes, les élèves sont les sujets du test, le traitement est l'enseignement, et l'école s'intéresse à la différence entre les résultats du pré-test et ceux de l'examen réel.

    S'il n'y a pas de différence entre les résultats du pré-test et ceux de l'examen, l'école saura qu'elle doit changer sa façon d'enseigner les informations.

    La principale hypothèse pour utiliser un test t jumelé, autre que le fait d'avoir des données jumelées, est que les différences dans les données sont normalement distribuées.

    Définition du test t par paires

    Un test \(t\) apparié, également connu sous le nom de test \(t\) d'échantillons appariés, est utilisé pour comparer la différence moyenne entre des paires de mesures est nulle ou non.

    Lessujets appariés, également appelés échantillons appariés ou paires appariées, sont deux mesures qui ne sont pas indépendantes l'une de l'autre.

    Dans l'exemple ci-dessus, l'école examinerait le score du pré-test d'un élève particulier et le comparerait au score réel de cet élève à l'examen. Ces deux notes ne sont pas indépendantes car c'est le même élève qui passe le pré-test et l'examen. Les deux résultats sont des paires appariées.

    Si tu avais des échantillons indépendants, tu utiliserais un test d'hypothèse différent. Voir l'article Test d'hypothèse pour deux distributions normales dans le cas d'échantillons indépendants.

    Même si les paires appariées ne sont pas indépendantes, les différences dans les mesures doivent être indépendantes. Qu'est-ce que cela signifie ?

    Dans l'exemple des examens, tu dois supposer que les élèves ne trichent pas entre eux. Si l'élève A trichait sur les copies d'examen de l'élève B, les différences entre les résultats du pré-test et ceux de l'examen pour les élèves A et B ne seraient pas indépendantes. Dans ce cas, tu ne pourrais pas utiliser un test par paires.

    Étant donné que l'une des hypothèses pour utiliser un test \N(t) apparié est que les différences sont normalement distribuées, tu peux traiter les différences comme s'il s'agissait d'un échantillon aléatoire provenant d'une distribution \N(\Ntext{N}(\Nmu,\Nsigma^2 )\N), puis effectuer le test d'hypothèse comme si tu disposais d'un seul échantillon. Pour plus d'informations sur ce type de test d'hypothèse, voir l'article Test d'hypothèse pour la différence entre deux moyennes.

    En général, lorsque tu effectues un test de paires, tu ne connais pas la variance de la population et le nombre de paires appariées est relativement faible.

    Tests t appariés ou non appariés

    Il est très important de comprendre quand tu utilises un test t standard par rapport à un test t apparié. Rappelle-toi qu'untest t non apparié est utilisé pour comparer les moyennes de deux échantillons indépendants afin de déterminer s'il y a une différence significative entre les deux.

    La principale différence entre les tests \ (t\) appariés et non appariés est que les tests\ (t\)appariés testent la différence entre la moyenne de deux échantillons.

    Disons que tu souhaites savoir si le fait de modifier l'agencement d'un magasin de vêtements signifie que davantage de personnes sont susceptibles d'acheter dans ce magasin. Tu souhaites comparer les ventes avant et après la modification de l'agencement. Les deux ensembles de données ne sont pas indépendants (tu fais correspondre les ventes avant et après), c'est pourquoi il faut utiliser un test par paires.

    En revanche, si tu veux voir si deux magasins différents qui ont un agencement similaire ont un nombre similaire de personnes qui y font des achats, tu utiliseras un test \(t\)-non apparié car les échantillons sont indépendants.

    Qu'en est-il des degrés de liberté du test ?

    Tests t appariés : degrés de liberté

    Un test \(t\) apparié fonctionne exactement de la même manière qu'un test \(t\) normal lorsqu'il s'agit de calculer les degrés de liberté. Les degrés de liberté sont égaux à la taille de l'échantillon moins \(1\) : \(\upsilon =n-1\).

    Qu'est-ce que \N(n\N) ? Dans un test t pairé, les deux échantillons prélevés ont la même taille d'échantillon, donc \N(n\N) est simplement le nombre de paires appariées.

    Formule du test t pour les échantillons appariés

    Bien sûr, il est utile d'avoir une définition plus formelle de la formule d'un test \(t\) apparié.

    Dans une expérience par paires où \N(n) est petit et \N(\sigma ^2) inconnu, si la différence entre deux moyennes de population, \N(D), est distribuée comme \N(\text{N}(\mu _D, \sigma ^2)\N), alors

    \[t=\dfrac{\bar{D}-\mu _D}{\dfrac{S}{\sqrt{n}}}\sim t_{n-1}\]

    où \(\bar{D}\) est la moyenne des différences entre les deux échantillons.

    Ce qu'il faut retenir ici, c'est que tu devras prendre la moyenne des différences plutôt que la moyenne des échantillons réels.

    Exemples de tests t pour échantillons appariés

    Prenons quelques exemples.

    Supposons que tu cherches à savoir si une lotion médicamenteuse pour la peau est plus efficace qu'une lotion non médicamenteuse. Tu rassembles donc un groupe de 20 personnes qui ont la peau sèche aux pieds. Pendant une semaine, elles se frottent le pied gauche avec une lotion médicamenteuse et le pied droit avec une lotion non médicamenteuse. À la fin de la semaine, tu vérifies le niveau de sécheresse de chaque pied. S'agit-il d'une situation dans laquelle tu devrais utiliser un test par paires ?

    Solution

    Remarque que la taille de l'échantillon est relativement petite et que tu ne connais pas la variance des populations. Un test de \(t\) est donc indiqué. La question est de savoir si tu utiliserais un test \(t\) apparié ou non.

    Tu vérifies le niveau de sécheresse du pied gauche et du pied droit d'une même personne et tu regardes la différence. Puisque tu examines les pieds de la même personne, cela correspond à des données appariées. Les données que tu collectes auprès d'une personne sont indépendantes des données que tu collectes auprès d'une autre personne, les différences sont donc indépendantes. Par conséquent, tu peux utiliser un test par paires tant que tu supposes que les différences dans les données sont normalement distribuées.

    Et si la situation changeait un peu ?

    Supposons que tu essaies de voir si une lotion médicamenteuse pour la peau est plus efficace qu'une lotion non médicamenteuse. Tu rassembles donc un groupe de 20 personnes ayant la peau sèche aux pieds. Pendant une semaine, la moitié d'entre elles se frottent les pieds avec une lotion médicamenteuse, et l'autre moitié du groupe se frotte les pieds avec une lotion non médicamenteuse. À la fin de la semaine, tu vérifies le niveau de sécheresse des pieds des personnes. S'agit-il d'une situation dans laquelle tu devrais utiliser un test par paires ?

    Solution

    Remarque que la principale différence entre cet exemple et le précédent est qu'il n'y a pas d'appariement ! Tu as vraiment deux groupes distincts de sujets qui reçoivent des traitements différents, et il n'y a aucun moyen d'apparier les données de manière significative. Ainsi, même si la petite taille de l'échantillon indique qu'un test de \(t\) sera utilisé, il ne s'agira pas d'un test de \(t\) apparié.

    Test T apparié - Principaux enseignements

    • Pour effectuer un test T apparié, tu dois avoir des données appariées, les différences entre les mesures sont indépendantes et les différences sont approximativement distribuées normalement .
    • Les degrés de liberté d'un test \(t\)-paire sont \(\upsilon =n-1\).
    • Dans une expérience par paires où \N(n) est petit et \N(\Nsigma ^2) est inconnu, si la différence entre deux moyennes de population, \N(D), est distribuée comme \N(\Ntext{N}(\Nmu _D, \sigma ^2)\), alors\[t=\dfrac{\bar{D}-\mu _D}{\dfrac{S}{\sqrt{n}} \sim t_{n-1}\]où \(\bar{D}\) est la moyenne des différences entre les deux échantillons.
    Questions fréquemment posées en Test T apparié
    Qu'est-ce qu'un Test T apparié?
    Un Test T apparié est une méthode statistique utilisée pour comparer les moyennes de deux échantillons liés.
    Quand utiliser un Test T apparié?
    On utilise un Test T apparié lorsqu'on veut comparer deux ensembles de données avant et après une intervention sur les mêmes sujets.
    Comment calculer un Test T apparié?
    Pour calculer un Test T apparié, on soustrait chaque paire de valeurs, calcule la moyenne, l'écart-type de ces différences et utilise une formule spécifique pour obtenir la valeur T.
    Quelle est la différence entre un Test T apparié et un Test T indépendant?
    Un Test T apparié compare des échantillons liés (mêmes sujets), tandis qu'un Test T indépendant compare des groupes distincts.

    Teste tes connaissances avec des questions à choix multiples

    Si tu prélèves des échantillons sur la même personne avant et après un traitement médical, quel type de test pourrais-tu utiliser ?

    Si tu as un groupe de contrôle et un groupe de traitement, quel type de test pourrais-tu utiliser ?

    Si tu as des jumeaux et que l'un d'entre eux fait partie du groupe de contrôle et l'autre du groupe de traitement, quel type de test pourrais-tu utiliser ?

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Mathématiques

    • Temps de lecture: 9 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !