L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Les comprimés comme Nurofen et Paracétamol sont des formulations. Cela signifie qu'ils sont des mélanges complexes de différents produits chimiques, soigneusement conçus pour un usage spécifique. Outre le principe actif, ils peuvent également contenir des arômes pour masquer tout goût amer, des revêtements glissants pour les rendre plus faciles à avaler et de l'amidon pour servir d'agent de charge et…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenLes comprimés comme Nurofen et Paracétamol sont des formulations. Cela signifie qu'ils sont des mélanges complexes de différents produits chimiques, soigneusement conçus pour un usage spécifique. Outre le principe actif, ils peuvent également contenir des arômes pour masquer tout goût amer, des revêtements glissants pour les rendre plus faciles à avaler et de l'amidon pour servir d'agent de charge et de liaison. Mais que faire si l'on veut isoler l'ingrédient actif ? L'un des moyens d'y parvenir est la chromatographie sur colonne.
La chromatographie sur colonne est une technique de séparation utilisée pour séparer des composants uniques d'un mélange dissous dans un fluide. Il s'agit d'un type de technique de chromatographie.
La chromatographie est une technique de séparation utilisée pour séparer des mélanges solubles. Dans la chromatographie sur colonne, un mélange est dissous dans un solvant et versé dans une colonne garnie d'un matériau solide. Les différents composants du mélange s'écoulent de la colonne à des vitesses différentes en fonction de leur adsorption sur le matériau solide. De cette façon, on peut isoler et séparer les différents composants.
Tous les types de chromatographie suivent les mêmes principes de base.
Si c'est la première fois que tu rencontres la chromatographie en tant que technique de séparation, il est utile de lire la rubrique Chromatographie au préalable. Nous avons également fait référence à la chromatographie en couche mince.
Voyons maintenant comment cela s'applique à la chromatographie sur colonne.
La phase stationnaire est un solide, un liquide ou un gel statique. En chromatographie, le solvant transporte le mélange soluble à travers la phase stationnaire.
En chromatographie sur colonne, la phase stationnaire est constituée d'une fine poudre de silice emballée dans une longue colonne de verre. La colonne est ouverte à une extrémité et comporte un robinet à l'autre. Une couche de laine minérale est placée au fond de la colonne pour empêcher la poudre de silice d'être emportée.
La poudre de silice n'est pas la seule phase stationnaire que tu peux utiliser. Tu peux aussi utiliser de l'alumine. Lorsque tu recherches un milieu approprié pour servir de phase stationnaire, prends en compte les facteurs suivants :
La phase mobile est le solvant utilisé pour dissoudre l'échantillon en chromatographie. Elle transporte l'échantillon à travers la phase stationnaire.
En chromatographie sur colonne, la phase mobile est tout solvant approprié. On l'appelle aussi l'éluant. Tu dissous ton mélange d'échantillons dans le solvant et le verses dans la colonne pour qu'il traverse la phase stationnaire.
Dans d'autres types de chromatographie, comme la chromatographie sur papier et la chromatographie en couche mince, nous pouvons calculer les facteurs de rétention. Il s'agit de mesures de la distance parcourue par chaque composant du mélange à travers la phase stationnaire par rapport à la distance totale parcourue par le solvant. Mais en chromatographie sur colonne, nous calculons plutôt les temps de rétention.
Le temps de rétention est le temps nécessaire à un composant particulier du mélange d'échantillons pour traverser la colonne. En d'autres termes, c'est le temps qui s'écoule entre l'injection de l'échantillon et la détection du composant.
Dans d'autres types de chromatographie, le même soluté produit toujours le même facteur de rétention, à condition que toutes les conditions restent identiques - la température, la phase stationnaire et la phase mobile, par exemple.
Mais il est beaucoup plus difficile de produire des temps de rétention cohérents. En effet, ils dépendent d'un grand nombre de facteurs différents. Il s'agit notamment de la longueur de la colonne, de la taille des particules de la phase stationnaire et du flux de gaz dans la pièce. Pour ces raisons, la chromatographie sur colonne n'a pas tendance à être utilisée pour identifier des substances. Nous laissons l'identification à d'autres techniques telles que la spectrométrie de masse et la chromatographie en couche mince.
En chromatographie, l'affinité relative décrit la façon dont un composant se lie à la phase stationnaire ou mobile. Elle détermine la vitesse à laquelle le composant se déplace à travers la phase stationnaire.
Une substance ayant une plus grande affinité avec la phase mobile se déplace plus rapidement à travers le solide de la colonne que celles ayant une plus grande affinité avec la phase stationnaire. L'affinité relative est liée à la liaison entre la substance et la phase stationnaire ou mobile.
Examinons la structure de la phase stationnaire, la poudre de silice. Elle est également connue sous le nom de dioxyde de silicium. Chaque particule de silice possède une couche de groupes -OH à l'extérieur, comme illustré ci-dessous :
Fig. 1- La silice.
Ces groupes -OH signifient que la silice peut former des liaisons hydrogène avec des substances appropriées. Les liaisons hydrogène sont un type de force intermoléculaire. Ces liaisons maintiennent la substance en place et l'empêchent d'être entraînée aussi rapidement dans la colonne par le solvant. Nous pouvons donc prédire ce qui suit :
Les substances qui peuvent former des liaisons hydrogène se lieront plus fortement à la poudre de silice et auront donc une plus grande affinité avec la phase stationnaire et une plus faible affinité avec la phase mobile. Elles se déplaceront plus lentement le long de la colonne et donneront des temps de rétention plus élevés. On dit qu'elles sont mieux adsorbées.
Les substances qui ne peuvent pas former de liaisons hydrogène se lient moins fortement à la poudre de silice. Il existe encore d'autres forces intermoléculaires entre elles et la poudre de silice, mais elles sont plus faibles que les liaisons hydrogène, de sorte que la substance se déplace plus rapidement dans la colonne. La substance a une plus grande affinité avec la phase mobile et une plus faible affinité avec la plaque stationnaire. De telles substances sont plus solubles dans le solvant et donnent des temps de rétention plus rapides.
Par exemple, les acides aminés peuvent former des liaisons hydrogène parce qu'ils contiennent un groupe N-H. Par contre, les alcènes ne peuvent pas le faire. En revanche, les alcènes ne le peuvent pas. Les acides aminés ont donc une affinité plus forte avec la phase stationnaire que les alcènes et ont donc des temps de rétention plus élevés. L'alcène traverse la colonne plus rapidement que l'acide aminé.
Comment procède-t-on à la chromatographie sur colonne ? Elle comporte les étapes suivantes.
Les étapes de la chromatographie sur colonne sont les suivantes :
Il existe deux types de préparation de la colonne, appelés techniques de garnissage, à savoir :
La colonne doit être correctement lavée et complètement séchée avant d'être utilisée.
Cette technique permet de séparer complètement les différents composants de la colonne. Le processus d'élution peut être réalisé en utilisant deux techniques :
Voici à quoi doit ressembler ta colonne après que tu as versé le mélange en haut.
Fig. 2- Installation de chromatographie sur colonne.
Le mélange doit se séparer en différents composants qui se déplacent dans la colonne à des vitesses différentes. Veille à remplacer le bécher par un autre lorsque chaque composant atteint l'extrémité de la colonne.
Fig. 3- Chromatographie sur colonne.
Regarde l'exemple ci-dessus. Le mélange vert de l'échantillon se divise en deux composants différents, un bleu et un jaune. Nous savons donc que le mélange est composé de deux substances différentes. Nous pouvons également constater que le composant jaune se déplace plus rapidement dans la colonne que le composant bleu. Cela signifie que le composant jaune a un temps de rétention plus court et une plus grande affinité avec la phase mobile que le composant bleu. Nous disons que le composant bleu est plus adsorbé que le composant jaune - il a une plus grande affinité et se lie plus fortement à la phase stationnaire.
Une fois que tu as recueilli les composants de l'échantillon dans différents béchers, tu peux les analyser de façon plus approfondie. Par exemple, tu peux effectuer une spectrométrie de masse ou une chromatographie sur couche mince sur l'un des composants pour déterminer son identité. Tu peux le purifier en éliminant le solvant. Une façon de le faire est la distillation. Tu peux également réaliser des réactions de base en éprouvette pour obtenir des indices sur la structure et la réactivité du composant.
Maintenant que nous savons comment fonctionne la chromatographie sur colonne, nous pouvons examiner certains de ses avantages.
La chromatographie sur colonne n'est pas seulement un moyen génial de diviser des mélanges en bandes de différentes couleurs - après tout, si nous voulions faire des arcs-en-ciel, nous pourrions simplement utiliser un prisme pour diviser la lumière ! La chromatographie sur colonne a en fait toute une série d'applications dans le monde réel. En voici quelques-unes :
Une variante de la chromatographie sur colonne standard est la chromatographie sur colonne flash. Dans cette technique, la phase mobile est forcée à travers la phase stationnaire sous une pression moyenne pour accélérer l'ensemble du processus. Cependant, cette méthode entraîne des coûts énergétiques supplémentaires, c'est pourquoi la chromatographie de base, assistée par gravité, est parfois préférée.
La chromatographie sur colonne comporte les étapes suivantes :
Tous les types de chromatographie suivent les mêmes principes de base.
La chromatographie sur colonne est une technique de séparation utilisée pour séparer des composants uniques d'un mélange dissous dans un fluide.
Tu peux maintenant séparer ton échantillon.
des utilisateurs ne réussissent pas le test de Chromatographie sur colonne ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter