Longueur d'onde de De Broglie

Quand tu penses à une particule comme un proton ou un électron, quel genre d'image te vient à l'esprit ? Dans les modèles tels que le modèle de Bohr, nous considérons souvent les particules comme des particules. Nous les dessinons comme des orbes ou des billes, mais Louis de Broglie, un physicien français, avait une hypothèse différente.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel est l'autre nom de l'hypothèse de De Broglie ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : La matière se comporte à la fois comme une particule et comme une onde.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Les longueurs d'onde des objets du quotidien sont suffisamment grandes/fortes pour avoir un effet visible.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Qu'est-ce que l'équation des ondes de De Broglie ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : L'équation de la longueur d'onde de De Broglie s'applique aux particules sans masse.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la relation entre la taille et la masse des particules ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle forme prennent les ondes de De Broglie pour les électrons ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Les électrons ne peuvent exister en tant qu'ondes stationnaires qu'à certains niveaux d'énergie.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un électron à l'état fondamental (n=1) est en orbite autour d'un noyau d'hélium à une vitesse de 3,0 x106 m/s. La masse d'un électron est de 9,11 x 10-31 kg. Quelle est la longueur d'onde de cet électron ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Calcule la longueur d'onde de De Broglie d'un neutron se déplaçant à 3,8 x104 m/s. La masse au repos d'un neutron est de 1,67 x 10-27 kg.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel est l'autre nom de l'hypothèse de De Broglie ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : La matière se comporte à la fois comme une particule et comme une onde.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Les longueurs d'onde des objets du quotidien sont suffisamment grandes/fortes pour avoir un effet visible.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Qu'est-ce que l'équation des ondes de De Broglie ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : L'équation de la longueur d'onde de De Broglie s'applique aux particules sans masse.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la relation entre la taille et la masse des particules ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle forme prennent les ondes de De Broglie pour les électrons ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Vrai ou faux : Les électrons ne peuvent exister en tant qu'ondes stationnaires qu'à certains niveaux d'énergie.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un électron à l'état fondamental (n=1) est en orbite autour d'un noyau d'hélium à une vitesse de 3,0 x106 m/s. La masse d'un électron est de 9,11 x 10-31 kg. Quelle est la longueur d'onde de cet électron ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Calcule la longueur d'onde de De Broglie d'un neutron se déplaçant à 3,8 x104 m/s. La masse au repos d'un neutron est de 1,67 x 10-27 kg.

Afficer la réponse

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Équipe éditoriale StudySmarter

Équipe enseignants Longueur d'onde de De Broglie

  • Temps de lecture: 8 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières
Table des mateères

    Jump to a key chapter

      Dans cet article, nous allons découvrir l'hypothèse de De Broglie et voir comment la matière peut se comporter comme plus qu'une simple particule.

      • Cet article traite de l'hypothèse de De Broglie
      • Tout d'abord, nous apprendrons ce qu'est l'hypothèse de De Broglie et ce que sont les ondes de matière
      • Ensuite, nous apprendrons à utiliser l' équation de la longueur d'onde de De Broglie .
      • Enfin, nous verrons comment l'hypothèse de De Broglie s'applique aux électrons.

      L'hypothèse de De Broglie

      De Brogliea émis l'hypothèse que la matière agit comme une onde.

      DeBroglie a émis l'idée que la matière agit comme une onde en 1924. Cette théorie est également connue sous le nom d'ondes de matière de De Broglie.

      Les ondes de matière

      Les ondes dematière sont le comportement ondulatoire de la matière.

      Les ondes de matière constituent une partie importante de la théorie de la mécanique quantique car elles montrent comment les ondes et les particules peuvent exister en même temps. Tous les types de matière se déplacent par vagues. Un faisceau d'électrons, par exemple, peut être courbé de la même manière qu'un faisceau de lumière ou une vague d'eau. La plupart du temps, cependant, la longueur d'onde est trop petite pour avoir un effet réel sur la vie quotidienne.

      Voici à quoi ressemblent ces ondes de matière :

      Hypothèse de De Broglie Ondes de matière StudySmarterFig.1 : Un exemple d'onde de matière

      Les flèches vertes et bleues montrent le comportement ondulatoire d'une espèce, tandis que la boule jaune représente le comportement particulaire.

      Lorsqu'on essaie de trouver l'emplacement d'une particule à un point x donné, la probabilité que la particule se trouve à "x" est répartie comme une onde, comme indiqué ci-dessus ; il n'y a pas de position définie de la particule.

      La distribution des probabilités est représentée par l'opacité. Aux points où la flèche est plus claire, la probabilité que la particule se trouve à cet endroit est plus faible.

      Équation de la longueur d'onde de De Broglie

      Dans le cadre de son hypothèse, De Broglie a proposé une équation pour trouver la longueur d'onde d'une particule.

      L'équation de la longueur d'onde de De Broglie est utilisée pour calculer la longueur d'onde d'une particule qui présente un comportement ondulatoire. L'équation est la suivante :

      $$\lambda=\frac{h}{p}$$

      Où :

      • λ est la longueur d'onde.
      • h est la constante de Planck (6,626 x 10-34 \(\frac{kg*m^2}{s}\)).
      • p est la quantité de mouvement.

      La longueur d'onde de Broglie est la longueur d'onde d'une particule avec masse, par opposition à une particule sans masse.

      Rappelle-toi que la formule de la quantité de mouvement (p) est \(p=mv\). Où m est la masse et v la vitesse. D'après cette formule, plus la particule est grosse, plus la longueur d'onde est petite. Pour cette raison, la longueur d'onde des objets de tous les jours est très petite, et leurs propriétés ondulatoires sont donc négligeables. Cependant, pour les petites particules comme les protons et les électrons, la longueur d'onde est grande/importante.

      Longueur d'onde thermique de De Broglie

      La longueur d'onde de Broglie thermique (λ th) correspond à peu près à la longueur d'onde de Broglie moyenne des particules de gaz dans un gaz idéal à la température donnée.

      Un gaz idéal est une estimation du comportement d'un gaz "réel". Les gaz idéaux ont un volume et une masse négligeables.

      L'expression donne la longueur d'onde de Broglie thermique :

      $$\lambda_{th}=\frac{h}{\sqrt{2*\pi*m*k_{B}*T}}$$

      Où :

      • h est la constante de Planck.
      • m est la masse de la particule de gaz.
      • kB est la constante de Boltzmann (1,38 x 10-23 J/K).
      • T est la température d'un gaz.

      Calculer la longueur d'onde de De Broglie

      Maintenant que nous connaissons l'équation de la longueur d'onde, mettons-la en pratique.

      Calcule la longueur d'onde de De Broglie d'un proton se déplaçant à 1,20 x106 m/s. La masse au repos d'un proton est de 1,67 x 10-27 kg.

      Tout d'abord, nous devons calculer la quantité de mouvement :

      $$p=m*v$$

      $$p=(1.67x10^{-27}\,kg)(1.20x10^6\frac{m}{s})$$

      $$p=2.004x10^{-21}\frac{kg*m}{s}$$

      Nous pouvons maintenant introduire ces données dans l'équation de la longueur d'onde :

      $$lambda=\frac{h}{p}$$.

      $$\lambda=\frac{6.626x10^{-34}\frac{kg*m^2}{s}}{2.004x10^{-21}\frac{kg*m}{s}}$$

      $$\lambda=3.31x10^{-7}\,m$$

      $$1x10{-9}\,m=1\,nm$$

      $$3.31x10^{-7}\,m*\frac{1\,nm}{1x10^{-9}\,m}=331\,nm$$

      À titre de référence, la lumière violette a une longueur d'onde d'environ 380 nm, donc cette longueur d'onde est un peu trop petite pour être visible par l'œil humain.

      Longueur d'onde de De Broglie pour les électrons

      Lorsque les électrons gravitent autour du noyau, les ondes de De Broglie forment une boucle fermée. Les électrons ne peuvent exister qu'en tant qu'ondes stationnaires qui "s'intègrent" dans le nuage d'électrons et sont "autorisées", comme le montre la figure ci-dessous :

      De Broglie Hypothesis Electron Waves StudySmarterFig.2 : Un niveau d'énergie autorisé (à gauche) et un niveau d'énergie non autorisé (à droite).

      À gauche, l'onde stationnaire s'insère le long du nuage d'électrons, elle se situe donc à un niveau d'énergie autorisé. À droite, l'onde ne s'adapte pas et ne se situe donc pas à un niveau d'énergie autorisé.

      Fondamentalement, les électrons sont autorisés à exister à des niveaux d'énergie fixes et quantifiés appelés "coquilles" :

      Hypothèse de De Broglie Niveaux d'énergie des électrons StudySmarterFig.3 : Niveaux d'énergie autorisés, également appelés "coquilles".

      Plus un électron est proche du noyau, plus son énergie est faible. Les électrons à l'état n=1 sont appelés électrons de l'état fondamental, puisqu'ils se trouvent au niveau d'énergie le plus bas.

      Maintenant que nous avons vu comment les ondes électroniques se comportent, calculons la longueur d'onde !

      Un électron à l'état fondamental (n=1) tourne autour d'un noyau d'hydrogène à une vitesse de 2,18 x106 m/s. La masse d'un électron est de 9,11 x 10-31 kg. Quelle est la longueur d'onde de cet électron ?

      Comme précédemment, nous devons d'abord calculer la quantité de mouvement :

      $$p=m*v$$

      $$p=(9.11x10^{-31}\,kg)(2.18x10^{6}\frac{m}{s})$$

      $$p=1.99x10^{-24}\frac{kg*m}{s}$$

      $$\lambda=\frac{h}{p}$$

      $$\lambda=\frac{6.626x10^{-34}\frac{kg*m^2}{s}}{1.99x10^{-24}\frac{kg*m}{s}}$$

      $$\lambda=3.33x10^{-10}\,m$$

      $$\lambda=0.333\,nm$$

      Applications de la longueur d'onde de De Broglie

      1. Les propriétés ondulatoires de la matière ne peuvent être observées que dans de très petites choses. En utilisant des électrons comme source, il est possible de créer une figure d'interférence de la longueur d'onde de Broglie. L'énergie moyenne d'un électron dans un microscope électronique est de 10 eV, la longueur d'onde de Broglie est donc de 3,9 x 10-10 m.

      Cela correspond à la distance qui sépare les atomes. Un cristal agit donc comme un réseau de diffraction d'électrons. La structure du cristal peut être déterminée en observant la figure de diffraction.

      2. La longueur d'onde utilisée dans un microscope limite la taille des plus petites choses que nous pouvons voir. La longueur d'onde la plus courte de la lumière visible est de 400 nm, ce qui correspond à 4 x 10-7 m. La plupart des microscopes électroniques utilisent des longueurs d'onde 1 000 fois plus petites et peuvent étudier de très petits détails.

      Longueur d'onde de De Broglie - Principaux enseignements

      • De Broglie a émis l'hypothèse que la matière agit comme une onde.
        • Lesondes de matière sont le comportement ondulatoire de la matière.
      • L'équation de la longueur d'onde de De Broglie est utilisée pour calculer la longueur d'onde d'une particule qui présente un comportement ondulatoire. L'équation est la suivante :

        $$\lambda=\frac{h}{p}$$

        • λ est la longueur d'onde
        • h est la constante de Planck (6,626 x 10-34 \(\frac{kg*m^2}{s}\))
        • p est la quantité de mouvement
      • Lorsque les électrons gravitent autour du noyau, les ondes de De Broglie forment une boucle fermée. Les électrons ne peuvent exister qu'en tant qu'ondes stationnaires qui "s'intègrent" dans le nuage d'électrons et sont "autorisées"

      Références

      1. Fig.2- Un niveau d'énergie autorisé (à gauche) et un niveau d'énergie non autorisé (à droite) (https://upload.wikimedia.org/wikipedia/commons/thumb/0/00/Standing_wave_electron_cloud.png/640px-Standing_wave_electron_cloud.png) par la Fondation CK-12 (https://ck12.org/) sous licence CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)
      Questions fréquemment posées en Longueur d'onde de De Broglie
      Qu'est-ce que la longueur d'onde de De Broglie ?
      La longueur d'onde de De Broglie est la longueur d'onde associée à une particule en mouvement, comme un électron, selon la mécanique quantique.
      Comment calculer la longueur d'onde de De Broglie ?
      Pour calculer la longueur d'onde de De Broglie, utilisez la formule λ = h / p, où λ est la longueur d'onde, h est la constante de Planck, et p est la quantité de mouvement.
      Pourquoi la longueur d'onde de De Broglie est-elle importante ?
      La longueur d'onde de De Broglie est cruciale car elle prouve que les particules ont des propriétés ondulatoires, ce qui est fondamental pour comprendre la mécanique quantique.
      Quelle est la relation entre la vitesse d'une particule et sa longueur d'onde de De Broglie ?
      La relation entre la vitesse d'une particule et sa longueur d'onde de De Broglie est inversement proportionnelle : plus la vitesse est élevée, plus la longueur d'onde est courte.
      Sauvegarder l'explication

      Teste tes connaissances avec des questions à choix multiples

      Quel est l'autre nom de l'hypothèse de De Broglie ?

      Vrai ou faux : La matière se comporte à la fois comme une particule et comme une onde.

      Vrai ou faux : Les longueurs d'onde des objets du quotidien sont suffisamment grandes/fortes pour avoir un effet visible.

      Suivant

      Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

      Lance-toi dans tes études
      1
      À propos de StudySmarter

      StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

      En savoir plus
      Équipe éditoriale StudySmarter

      Équipe enseignants Physique-chimie

      • Temps de lecture: 8 minutes
      • Vérifié par l'équipe éditoriale StudySmarter
      Sauvegarder l'explication Sauvegarder l'explication

      Sauvegarder l'explication

      Inscris-toi gratuitement

      Inscris-toi gratuitement et commence à réviser !

      Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

      La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

      • Fiches & Quiz
      • Assistant virtuel basé sur l’IA
      • Planificateur d'étude
      • Examens blancs
      • Prise de notes intelligente
      Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !