L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
L'ammoniac, \( NH_3 \) , a une odeur distincte et piquante. Malgré son arôme rebutant, il est important d'un point de vue industriel, car il est un ingrédient fondamental de nombreux engrais, fibres synthétiques et plastiques. Il s'agit d'une réaction réversible. Dans des conditions atmosphériques normales, le rendement de l'ammoniac est très faible. Mais si nous modifions les conditions comme…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenL'ammoniac, \( NH_3 \) , a une odeur distincte et piquante. Malgré son arôme rebutant, il est important d'un point de vue industriel, car il est un ingrédient fondamental de nombreux engrais, fibres synthétiques et plastiques. Il s'agit d'une réaction réversible. Dans des conditions atmosphériques normales, le rendement de l'ammoniac est très faible. Mais si nous modifions les conditions comme la pression la température ou la concentration des réactifs, nous pouvons augmenter le rendement de manière spectaculaire, en utilisant le principe de Le Chatelier.
Les réactions réversibles sont des réactions qui forment des produits qui, dans des conditions différentes, peuvent réagir ensemble pour former à nouveau les réactifs d'origine.
L'équilibre chimique est l'état d'un système dans lequel la concentration du réactif et la concentration du produit ne changent pas avec le temps, et le système ne présente plus aucun changement de propriétés.
Lorsque la vitesse de la réaction directe est égale à la vitesse de la réaction inverse, le système atteint l'état d'équilibre chimique. Lorsqu'il n'y a plus de changement dans les concentrations des réactifs et des produits en raison de l'égalité des vitesses de la réaction directe et de la réaction inverse, on dit que le système est en état d'équilibre dynamique.
La constante d'équilibre K est une valeur qui nous indique les quantités relatives de réactifs et de produits dans un système à l'équilibre.
Prenons la réaction hypothétique,
$$ aA+bB \rightleftharpoons cC+dD $$
Ici, les lettres majuscules représentent les différentes espèces impliquées tandis que les lettres minuscules représentent leurs coefficients stœchiométriques dans l'équation équilibrée. Pour la réaction ci-dessus, \( K_{éq} \) ressemble à ceci :
$$ K_{éq} = \frac{[C]_{éq}^c[D]_{éq}^d}{[A]_{éq}^a[B]_{éq}^b} $$
Lorsque tu démarres une réaction réversible, les concentrations des réactifs et des produits changent constamment. Mais si tu laisses la réaction dans un système fermé, les concentrations finissent par se stabiliser. Lorsque cela se produit, on dit que la réaction a atteint l'équilibre dynamique.
L'équilibre dynamique est un état d'une réaction réversible, dans lequel les concentrations des produits et des réactifs restent constantes et les vitesses des réactions en avant et en arrière sont les mêmes.
Les équilibres chimiques sont des exemples d'équilibres dynamiques. Cela signifie que les réactions en avant et en arrière sont constamment en cours. Mais comme elles se produisent au même rythme, leurs effets s'annulent ; il semble qu'il n'y ait pas de réaction globale.
Dans un équilibre dynamique, bien que les produits et les réactifs soient constamment décomposés et recomposés, les niveaux globaux de chaque espèce ne changent pas.
L'équilibre statique est un état dans lequel la réaction qui se produit dans un système est complètement arrêtée et où il n'existe aucun mouvement entre les réactifs et les produits correspondant à la réaction chimique.
Si les forces agissant sur un objet s'annulent, outre la constance du contenu et de la composition, il n'y a pas de mouvement de l'objet. Il s'agit de l'équilibre statique.
Les principales différences entre l'équilibre statique et l'équilibre dynamique sont présentées dans le tableau ci-dessous.
Équilibre statique vs équilibre dynamique | |
Équilibre dynamique | Équilibre statique |
Ce type d'équilibre est réversible dans la nature. | Ce type d'équilibre est irréversible par nature. |
Cet équilibre implique que les réactifs et les produits participent toujours aux réactions chimiques. | Il n'y a plus de réaction chimique dans le système. |
En cas d'équilibre dynamique, les vitesses de réaction en avant et en arrière sont égales. | En cas d'équilibre statique, les taux de réaction en avant et en arrière sont nuls. |
Il ne peut se produire que dans des systèmes fermés | Il peut se produire dans des systèmes ouverts ou fermés |
Le principe de Le Chatelier, également connu sous le nom de loi d'équilibre, est utilisé pour prédire l'effet de certains changements sur un système en équilibre chimique. Le principe porte le nom du chimiste français Henry Louis Le Chatelier.
Le principe de Le Chatelier explique comment les systèmes en équilibre dynamique réagissent aux changements de conditions. Il stipule que si les conditions d'un système fermé changent, la position de l'équilibre se déplacera pour contrer le changement.
Imagine que tu sois responsable de l'admission des clients dans un restaurant. Le restaurant ne peut accueillir qu'un certain nombre de personnes à la fois - il est limité par le nombre de places assises. Aux heures d'affluence, cela signifie que certaines personnes doivent faire la queue à l'extérieur et attendre pour entrer. Toutefois, pour maximiser les bénéfices, l'idéal est que le plus grand nombre possible de personnes mangent à l'intérieur du restaurant.
À 2 heures, une grande fête se termine et de nombreux convives quittent le restaurant en même temps. Les conditions ont changé : il y a soudain beaucoup moins de monde à l'intérieur. Afin de remplir les sièges vides, tu ouvres les portes et laisses entrer un grand nombre de personnes en une seule fois. Tu as réagi à la "perturbation" causée par le départ simultané de nombreuses personnes en laissant entrer plus de monde, afin de contrebalancer le changement causé par la perturbation.
La modification des conditions d'un équilibre entraîne une réaction à l'équilibre. Il existe plusieurs façons de perturber un équilibre. Il s'agit notamment de :
Lorsque des facteurs tels que la concentration, la pression et la température qui affectent l'équilibre, sont modifiés, l'équilibre se déplace dans cette direction, où les effets causés par ces changements sont annulés.
Le principe de Le Chatelier est souvent utilisé pour manipuler des réactions réversibles afin d'obtenir des résultats appropriés tels qu'une amélioration du rendement.
Que se passe-t-il lorsque l'on diminue la concentration d'une substance ? Il y a essentiellement moins de molécules dans le même volume. C'est ce qui se passe lorsque de nombreux clients quittent le restaurant. Pour contrer la perturbation causée par le changement de conditions, nous devons laisser entrer plus de monde, c'est-à-dire augmenter la concentration de cette substance. Par exemple, si nous diminuons la concentration des produits, l'équilibre se déplacera pour favoriser la réaction en avant afin de faire remonter la concentration des produits. Si nous diminuons la concentration des réactifs, l'équilibre se déplacera en faveur de la réaction inverse, afin de faire remonter la concentration des réactifs.
Voici à nouveau l'équation de l'équilibre impliquant l'ammoniac :
\( N_{2(g)} + 3H_{2(g)} ⇌ 2NH_{3(g)} \) \( ΔH = -92 \ kJ \ mol^{-1} \)
On peut dire ce qui suit :
Nous commencerons par examiner comment la température affecte un équilibre. Rappelle-toi que le principe de Le Chatelier stipule qu'une modification des conditions d'un équilibre entraîne un déplacement de la réaction pour s'opposer à la modification. Peux-tu prédire ce qui se passera si tu augmentes la température d'un équilibre dynamique ?
Le système essaiera de diminuer la température pour s'opposer au changement. Le seul moyen d'y parvenir est de favoriser la réaction endothermique - celle qui absorbe de la chaleur sous forme d'énergie.
En voici un exemple. Examine l'équation de l'équilibre entre l'azote, l'hydrogène et l'ammoniac.
\( N_{2(g)} + 3H_{2(g)} ⇌ 2NH_{3(g)} \) \( ΔH = -92 \ kJ mol^{-1} \)
La réaction en avant est exothermique, tandis que la réaction en arrière est endothermique. Nous pouvons affirmer ce qui suit :
Une réaction exothermique est une réaction chimique qui produit de la chaleur (avec un \( ΔH \) négatif).
Les réactions endothermiques absorbent plus de chaleur de leur environnement qu'elles n'en libèrent.
La température peut être ajoutée à un système soit de manière externe, soit à la suite d'une réaction chimique.
Si une réaction chimique est exothermique ( \( ΔH \) est négatif ou la chaleur est libérée), la chaleur est considérée comme un produit de la réaction. Si la réaction est endothermique ( \( ΔH \) est positif ou la chaleur est absorbée), la chaleur est considérée comme un réactif.
Ainsi, l'augmentation ou la diminution de la température peut être considérée comme la même chose que l'augmentation ou la diminution de la concentration des réactifs ou des produits. Si la température est augmentée, la chaleur du système augmente, ce qui entraîne un déplacement de l'équilibre vers la gauche (réactifs). Si la température est diminuée, l'équilibre se déplace vers la droite (produits). En d'autres termes, le système compense la baisse de température en favorisant la réaction qui génère de la chaleur.
S'ils sont à la même température et dans un récipient de même volume, tous les gaz ont la même pression par mole. La pression est due au fait que les molécules de gaz entrent en collision de manière aléatoire avec les parois du récipient.
Imaginons maintenant que nous augmentions la pression du système. Pour s'opposer à ce changement, le système tentera de réduire la pression en diminuant le nombre de collisions qui se produisent. Le système ne peut pas modifier la vitesse des particules ou la fréquence de leurs collisions, mais il peut réduire la pression en diminuant le nombre de molécules de gaz dans le système.
Moins de molécules, moins de collisions - c'est simple, non ? Par conséquent, l'augmentation de la pression favorise la réaction qui produit moins de moles de gaz. En revanche, la diminution de la pression favorise la réaction qui produit un plus grand nombre de moles de gaz.
Les catalyseurs sont des substances qui augmentent la vitesse de réaction sans être utilisées ou modifiées au cours du processus.
Les catalyseurs n'affectent pas la position d'équilibre. En effet, ils accélèrent la réaction en avant et la réaction en arrière au même rythme. Cependant, l'ajout d'un catalyseur est utile, car il accélère le temps nécessaire à un système pour atteindre l'équilibre dynamique.
Le principe de Le Chatelier explique comment les systèmes en équilibre dynamique réagissent aux changements de conditions. Il stipule que si les conditions d'un système fermé changent, la position de l'équilibre se déplacera pour contrer le changement.
Pour savoir si une réaction est exothermique ou endothermique, détermine si le flux net d'énergie (chaleur) entre ou sort du processus.
Une réaction à l'équilibre est une réaction chimique entre les réactifs qui reste dans un état stable avant et après l'achèvement de la réaction.
On dit d'une réaction qu'elle se trouve dans un état d'équilibre thermodynamique lorsqu'elle satisfait aux trois types d'équilibre :
L'équilibre est atteint lorsque la vitesse d'avancement d'une réaction est égale à la vitesse d'inversion d'une réaction. Ce principe très simple peut être observé dans un récipient fermé contenant un liquide.
Pour déplacer un équilibre chimique d'un mélange, on peut :
des utilisateurs ne réussissent pas le test de Principe de Le Chatelier ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !