L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Il existe de nombreux groupes fonctionnels différents dans les molécules organiques, notamment les alcools, les amines, les alcanes et les alcènes, pour n'en citer que quelques-uns. Mais comment identifier les groupes fonctionnels présents dans les différentes molécules organiques ? Pour cela, nous utilisons une technique appelée spectroscopie infrarouge (IR). Cela fonctionne parce que les différentes liaisons ont des vibrations de fréquences…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenIl existe de nombreux groupes fonctionnels différents dans les molécules organiques, notamment les alcools, les amines, les alcanes et les alcènes, pour n'en citer que quelques-uns. Mais comment identifier les groupes fonctionnels présents dans les différentes molécules organiques ?
Pour cela, nous utilisons une technique appelée spectroscopie infrarouge (IR). Cela fonctionne parce que les différentes liaisons ont des vibrations de fréquences différentes, ce qui nous permet de les différencier.
La spectroscopie infrarouge est une technique d'analyse utilisée pour identifier les groupes fonctionnels des molécules organiques.
Il existe deux types de spectromètres utilisés en spectroscopie infrarouge, un spectromètre à rayonnement infrarouge dispersif et un spectromètre à rayonnement infrarouge à transformée de Fourier.
Le processus de spectroscopie infrarouge comporte quelques étapes. Elles sont les suivantes :
Un spectre d'absorption est un graphique qui montre un composé chimique absorbant un rayonnement sur une gamme de fréquences.
La spectroscopie infrarouge à transformée de Fourier (FTIR) est un type spécifique de spectroscopie IR. Contrairement à un spectromètre IR dispersif, où un élément dispersif divise la lumière entrante en ses composants spectraux et où chaque composant est mesuré individuellement, un à la fois, en FTIR, toutes les fréquences de la lumière sont mesurées simultanément. Le spectre IR est alors obtenu via une conversion mathématique appelée transformation de Fourier. Étant donné que la spectroscopie FTIR mesure toutes les fréquences simultanément, l'analyse FTIR peut être effectuée beaucoup plus rapidement par rapport à une technique de balayage.1
Dans la spectroscopie infrarouge à transformée de Fourier (FTIR), toutes les composantes spectrales de la source lumineuse sont détectées ensemble. Afin d'obtenir un spectre FTIR, la composition spectrale de la lumière entrante est modifiée en permanence. Par conséquent, le signal détecté par le détecteur FTIR dépend du temps. Une opération mathématique appelée transformation de Fourier nous permet de convertir le signal du détecteur d'un domaine temporel dans le domaine fréquentiel affiché finalement en nombres d'onde, cm-1, ce qui donne le spectre FTIR.1
Comme nous pouvons le voir dans l'image ci-dessous, le tableau comporte deux colonnes. La colonne "Liaison" représente les groupes fonctionnels des différents composés organiques. Le "nombre d'ondes" représente le nombre d'ondes dans une longueur d'onde ou une distance donnée. D'après le tableau, nous savons également que les liaisons des différents groupes fonctionnels absorbent différentes fréquences de rayonnement infrarouge. C'est la base pour distinguer les groupes fonctionnels avec la spectroscopie infrarouge.
Fig. 1-Table de spectroscopie infrarouge
Tous les composés organiques absorbent le rayonnement infrarouge. Ce rayonnement infrarouge est absorbé par les liaisons entre les molécules à différentes longueurs d'onde.
Une paire d'atomes vibre constamment. Lorsque les molécules organiques absorbent le rayonnement infrarouge, les liaisons entre les différents atomes vibrent encore plus. De ce fait, les liaisons covalentes de la molécule vibrent également et sont forcées de s'étirer, de se plier ou de se tordre. Toutes les molécules vibrent à une fréquence spécifique. Chaque liaison au sein d'une molécule a une fréquence de vibration naturelle unique. L'intensité de la vibration dépend de trois facteurs principaux :
Le spectre infrarouge d'une molécule est un graphique qui est produit une fois que le processus de spectroscopie infrarouge a été effectué. Nous pouvons en voir un exemple ci-dessous.
Fig. 2-Exemple de spectre infrarouge d'une molécule
Dans le spectre infrarouge, la transmittance est représentée sur l'axe des ordonnées, tandis que le nombre d'onde est représenté sur l'axe des abscisses. Comme on peut le voir, le spectre consiste en une série de creux dans la transmittance à certaines longueurs d'onde, que l'on appelle (par confusion) des "pics". Ces pics représentent les vibrations provoquées par l'absorption du rayonnement infrarouge.
La transmittance mesure le pourcentage de rayonnement qui traverse un échantillon.
Le nombre d'ondes est le nombre d'ondes à une distance donnée. Cette distance est appelée "longueur d'onde". Le nombre d'onde est égal à 1/la longueur d'onde, ils sont donc inversement proportionnels. Il s'agit d'une mesure utilisée pour la fréquence.
Les pics pointent vers le bas dans les spectres IR.
Ces informations peuvent nous permettre d'identifier les groupes fonctionnels dans la molécule. Le tableau de données de la spectroscopie infrarouge, tel qu'illustré ci-dessus, est utilisé pour faire correspondre les différents pics du spectre avec les groupes fonctionnels qui ont pu les provoquer. Les groupes fonctionnels de la molécule peuvent être trouvés dans la région comprise entre 4000 cm-1 et 1500 cm-1 du spectre infrarouge.
La région de l'empreinte digitale est la zone du spectre située en dessous de 1500 cm-1. Cette région contient des absorptions pour certaines vibrations complexes qui sont généralement causées par la flexion ou l'étirement de liaisons simples. Pour cette raison, le motif dans cette région est très compliqué et est unique à la molécule. Il existe une base de données dans laquelle les spectres infrarouges de molécules organiques connues ont été enregistrés. Par conséquent, les spectres infrarouges produits pour un composé inconnu complexe peuvent être comparés à la base de données.
Fig. 3-Spectre mettant en évidence la position de la région de l'empreinte digitale et de la région du groupe fonctionnel.
La spectroscopie infrarouge est largement utilisée dans l'industrie ainsi que dans la recherche. C'est une technique simple et fiable de mesure, de contrôle qualité et de mesure dynamique. Il est également utilisé dans l'analyse médico-légale dans l'analyse civile et pénale.2
Certaines des principales applications de la spectroscopie IR sont les suivantes :
Toute la région IR est divisée en région de fréquence de groupe et région d'empreintes digitales. La gamme de fréquence de groupe est de 4000-1500 cm-1 tandis que celle de la région d'empreintes digitales est de 1500-400 cm-1.
Dans la région de fréquence de groupe, les pics correspondant à différents groupes fonctionnels peuvent être observés. Selon les pics correspondants, le groupe fonctionnel peut être déterminé.
Chaque atome de la molécule est relié par une liaison et chaque liaison nécessite une région IR différente, de sorte que des pics caractéristiques sont observés. Cette région du spectre IR est appelée région d'empreintes digitales de la molécule. Elle peut être déterminée par des pics caractéristiques.
La spectroscopie IR est utilisée pour établir si un échantillon donné d'une substance organique est identique ou non à un autre. En effet, un grand nombre de bandes d'absorption est observé dans les spectres IR des molécules organiques et la probabilité que deux composés produisent des spectres identiques est presque nulle. Donc, si deux composés ont des spectres IR identiques, ils doivent tous deux être des échantillons des mêmes substances.
Les spectres IR des deux composés énantiomères sont identiques. La spectroscopie IR ne parvient donc pas à faire la distinction entre les énantiomères.
La progression de la réaction chimique peut être déterminée en examinant la petite portion du mélange réactionnel prélevée de temps à autre. On observe la vitesse de disparition d'une bande d'absorption caractéristique du groupe réactif et/ou la vitesse d'apparition de la bande d'absorption caractéristique du groupe produit due à la formation de produit.
Le spectre IR de l'échantillon d'essai à déterminer est comparé au composé standard. Si des pics supplémentaires sont observés dans le spectre IR, cela est dû aux impuretés présentes dans le composé.
La quantité de la substance peut être déterminée soit sous forme pure, soit sous la forme d'un mélange de deux composés ou plus. Dans ce cas, le pic caractéristique correspondant à la substance médicamenteuse est choisi et le des pics pour l'échantillon standard et l'échantillon d'essai est comparé. C'est ce qu'on appelle la technique de la ligne de base pour déterminer la quantité de la substance.
Comme toutes les techniques, la spectroscopie infrarouge peut s'avérer très utile, mais elle a aussi ses inconvénients. Voyons quels sont ces pièges.
Les échantillons visualisés ne nécessitent aucune préparation particulière, comme l'ajout d'un colorant radioactif.
Il a une vitesse de balayage élevée. Toutes les informations nécessaires pour l'ensemble de la gamme de fréquences peuvent être obtenues en quelques secondes.
Le spectromètre infrarouge a une résolution très élevée.
Il a un large éventail d'applications, tant en analyse qualitative qu'en analyse quantitative, et peut donc être utilisé pour analyser presque tous les composés organiques.
Si un échantillon contient de l'eau, la spectroscopie infrarouge n'est pas applicable. Un solvant comme l'eau absorberait le rayonnement infrarouge.
Il peut parfois y avoir des complications. Nous ne pouvons pas clarifier complètement la structure d'un composé sur la base d'un seul spectre de rayonnement infrarouge.
La spectroscopie infrarouge peut être limitée à certaines conditions pour l'analyse quantitative (où des nombres et pas seulement des catégories sont nécessaires, comme "liaison N-H").
Lorsque la fréquence d'une vibration spécifique est égale à la fréquence du rayonnement IR dirigé sur la molécule, la molécule absorbe le rayonnement. L'examen de la lumière transmise révèle la quantité d'énergie absorbée à chaque fréquence (ou longueur d'onde).
L'interprétation de ce spectre repose sur la mise en correspondance des bandes d'absorption avec les liaisons chimiques associées, et par conséquent les groupes caractéristiques de la molécule.
En règle générale, l'interprétation des spectres IR commence à l'extrémité haute fréquence pour identifier les groupes fonctionnels présents. Les régions d'empreintes digitales sont ensuite étudiées pour identifier positivement le composé. Heureusement, il existe de vastes bibliothèques de spectres infrarouges disponibles et tables IR, permettant de comparer des matériaux inconnus pour assurer une identification rapide et précise
Il fonctionne en faisant briller la lumière infrarouge à travers le composé organique que nous voulons identifier ; certaines des fréquences sont absorbées par le composé, et si nous surveillons la lumière qui la traverse, les fréquences exactes des absorptions peuvent être utilisées pour identifier des groupes spécifiques d'atomes au sein des molécules.
des utilisateurs ne réussissent pas le test de Spectroscopie infrarouge ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter