L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
La substitution nucléophile est une réaction de substitution qui joue un rôle important, surtout dans le cas des halogénoalcanes. La liaison polaire entre un atome de carbone du composé et le substituant X plus électronégatif est rompue, ce qui permet à une autre particule dite nucléophile de se lier au composé. Il se produit une substitution. Comment passe-t-on d'un halogénoalcane à une…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenLa substitution nucléophile est une réaction de substitution qui joue un rôle important, surtout dans le cas des halogénoalcanes. La liaison polaire entre un atome de carbone du composé et le substituant X plus électronégatif est rompue, ce qui permet à une autre particule dite nucléophile de se lier au composé. Il se produit une substitution. Comment passe-t-on d'un halogénoalcane à une molécule telle qu'un alcool, un nitrile ou une amine ? Ce sont tous des exemples de réactions de substitution nucléophile.
Les réactions de substitution nucléophile sont des réactions dans lesquelles un nucléophile attaque une molécule et remplace l'un de ses groupes fonctionnels.
Décortiquons un peu le terme de substitution nucléophile. Tout d'abord, la substitution.
Une réaction de substitution est une réaction dans laquelle un groupe fonctionnel d'une molécule est remplacé par un groupe fonctionnel différent.
Ensuite, regardons le terme nucléophile. Il fait référence aux nucléophiles.
Un nucléophile est un donneur de paires d'électrons.
Les nucléophiles sont des espèces chimiques qui réagissent en donnant une paire d'électrons solitaires à une espèce déficiente en électrons pour former une liaison covalente. Les nucléophiles sont tous chargés négativement ou partiellement négativement (ce que nous représentons par le symbole delta, \(( \delta) \) et possèdent une paire d'électrons non liante.
Une espèce déficiente en électrons est simplement une molécule ou un ion qui présente une zone de charge positive. Toute espèce entièrement ou partiellement chargée positivement est déficiente en électrons.
En examinant de plus près le terme nucléophile, nous pouvons nous faire une idée de ce que sont réellement ces espèces. -Le terme "nucléophile" vient du mot grec "philos", qui signifie "aimer", et "nucléo" fait référence aux noyaux, qui sont les zones chargées positivement des atomes. Par conséquent, les nucléophiles doivent "aimer" les régions positives - ils sont attirés par elles.
Voici quelques exemples de nucléophiles :
Note que l'ammoniac n'est pas un ion. Cependant, c'est toujours un nucléophile, car il possède une paire d'électrons non liante et un atome avec une charge négative partielle. Dans ce cas, cet atome est l'azote.
On pourrait te pardonner de confondre la substitution nucléophile avec un terme similaire : la substitution électrophile. Bien que ces deux types de réactions aient certaines caractéristiques en commun, elles impliquent des espèces très différentes. Il est important que tu saches faire la différence entre les deux :
Voici quelques exemples d'électrophiles :
Cependant, la substitution nucléophile et la substitution électrophile sont toutes deux des exemples de réactions de substitution. Cela signifie qu'elles échangent un groupe fonctionnel dans une molécule organique contre un autre groupe fonctionnel.
Tu examineras plus en détail un exemple de réaction de substitution électrophile dans la section Réactions du benzène.
Nous savons que les halogénoalcanes sont des molécules polaires ( explore halogénoalcanes pour te rafraîchir la mémoire). L'atome d'halogène dans la liaison C-X étant beaucoup plus électronégatif que l'atome de carbone, il attire la paire d'électrons partagée vers lui. Les électrons sont chargés négativement. L'atome d'halogène est donc partiellement chargé négativement et le carbone est partiellement chargé positivement.
Fig.2- C-X polarité.
Les nucléophiles, dont nous savons maintenant qu'ils " aiment " les régions positives, peuvent attaquer cet atome de carbone partiellement chargé, dans un exemple de réaction de substitution nucléophile.
Les réactions de substitution nucléophile des halogénoalcanes suivent toutes l'un des deux mécanismes similaires. Le mécanisme utilisé dépend de la classification de l'halogénoalcane.
Comme nous l'avons mentionné, les mécanismes de réaction \( SN_1 \) et \( SN_2 \) sont similaires, mais ils présentent des différences. Nous les explorons tous deux en détail dans l'article Mécanisme de substitution nucléophile. Tu pourras y voir des diagrammes de mécanisme montrant le mouvement des électrons pour t'aider à différencier les deux processus
Note : si ton jury d'examen ne fait pas spécifiquement référence aux mécanismes \( SN_1 \) ou \( SN_2 \) , lorsqu'il mentionne la substitution nucléophile, il s'agit du mécanisme \( SN_2 \) utilisé par les halogéno-alcanes primaires et secondaires. Et si tu ne connais pas la différence entre les halogéno-alcanes primaires, secondaires et tertiaires, consulte Halogénoalcanes.
L'équation générale des deux mécanismes est la même :
$$ RCH_2X + Nu^- \rightarrow RCH_2Nu + X^- $$
Nous avons présenté l'équation en utilisant un halogénoalcane primaire pour des raisons de simplicité, mais il est assez facile de l'adapter à d'autres classifications d'halogéno-alcanes. Il suffit de remplacer l'un ou les deux atomes d'hydrogène de l'halogéno-alcane par un ou deux groupes R supplémentaires.
Un groupe partant est un fragment de molécule qui quitte la molécule mère dans une réaction chimique. Lorsque la liaison chimique entre le groupe partant et la molécule mère est rompue, la paire d'électrons de liaison se déplace vers le groupe partant.
Certains halogènes sont plus aptes que d'autres à agir comme groupe partant. Cela signifie qu'ils réagissent beaucoup plus facilement dans les réactions de substitution nucléophile. Leur capacité à agir de la sorte augmente au fur et à mesure que l'on descend dans le tableau périodique, et ceci grâce au rayon atomique.
Par exemple, les fluoroalcanes avec des liaisons \( C-F \) ne subissent pas de substitution nucléophile alors que les iodoalcanes avec des liaisons \( C-I \) faibles réagissent rapidement avec les nucléophiles.
Cela s'explique par le fait que l'iode est un atome beaucoup plus grand que le fluor. Ses électrons de valence sont beaucoup plus éloignés de son noyau et la liaison \( C-I \) est plus longue que la liaison \( C-F \) . Cela signifie que la liaison a une valeur beaucoup plus faible que la liaison \( C-F \) . Cela signifie que la liaison a une enthalpie beaucoup plus faible et qu'il faut moins d'énergie pour la rompre. La liaison est plus réactive. La longueur des liaisons augmente au fur et à mesure que l'on descend dans le groupe du tableau périodique.
Fig.3- Réactivité des halogénoalcanes.
Par conséquent, la réactivité des halogénoalcanes en cas de substitution nucléophile augmente à mesure que l'on descend dans le groupe.
Pour plus d'informations sur les halogénoalcanes et leur réactivité, voir Halogénoalcanes.
Nous avons vu ci-dessus que la substitution nucléophile peut avoir un mécanisme \( SN_1 \) ou \( SN_2 \) . Ces deux mécanismes différents donnent des produits présentant des aspects stéréochimiques différents :
Nous avons montré ces aspects stéréochimiques en utilisant une réaction de substitution nucléophile d'un halogénoalcane :
Fig.4- Aspects stéréochimiques des produits des réactions de substitution nucléophile.
Remarque comment, dans le mécanisme \( SN_2 \) ci-dessus, les liaisons dans le produit sont inversées par rapport à la molécule initiale qui réagit. Compare cela au mécanisme \( SN_1 \) , qui produit deux énantiomères différents. L'un des produits est inversé, tandis que l'autre conserve la disposition originale des liaisons.
Une fois encore, les aspects stéréochimiques de la substitution nucléophile deviendront plus clairs dans Mécanisme de substitution nucléophile. Tu peux également en savoir plus sur les stéréoisomères et les mélanges racémiques dans Isomérie optique.
Passons maintenant à des exemples de substitution nucléophile. Nous allons nous concentrer sur les réactions de substitution nucléophile impliquant des halogéno-alcanes.
Les halogéno-alcanes peuvent réagir avec l'ion hydroxyde, l'ion cyanure et la molécule d'ammoniac dans des réactions de substitution nucléophile. Ces réactions utilisent toutes le mécanisme \( SN_2 \) ou \( SN_1 \) que nous avons vu précédemment, en fonction de la classification de l'halogénoalcane qui réagit. Rappelle-toi :
Les halogénoalcanes réagissent avec de l'hydroxyde de sodium ou de potassium aqueux \( (NaOH \space ou \space KOH) \) pour former un alcool \( (ROH) \) et un ion halogénure \( (X^-) \). Les alcools ont le groupe fonctionnel hydroxyle \( (-OH) \) et sont représentés par la formule générale \( C_xH_{2x+1}OH \). L'ion potassium/sodium agit comme un ion spectateur et n'est pas représenté dans le mécanisme.
Fig.5- Mécanisme de réaction de substitution nucléophile.
Si nous écrivons tous les ions impliqués dans une réaction, nous pouvons voir quels sont les ions spectateurs. Par exemple, dans la réaction entre l'acide chlorhydrique \( (HCl) \) et l'hydroxyde de sodium \( (NaOH) \), les ions sodium \( (Na^+) \) et les ions chlorure \( (Cl^-) \) sont tous des spectateurs - ils restent dans le même état et ne sont pas modifiés par la réaction.
$$ HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)}$$
$$H^+_{(aq)} + \cancel {Cl^-_{(aq)} } + \cancel {Na^+_{(aq)}}+ OH^-_{(aq)} \rightarrow \cancel {Na^+_{(aq)}} + \cancel { Cl^-_{(aq)} }+ H_2O_{(aq)} $$
Voyons les conditions de la substitution nucléophile par des ions hydroxyde. Les halogénoalcanes ne se mélangent pas facilement à l'eau, l'éthanol est donc utilisé comme solvant pour la réaction de substitution. Le mélange est chauffé à reflux pour augmenter la vitesse de réaction :
Pour en savoir plus sur les taux de réaction, voir la théorie des collisions et l'augmentation des taux.
Par exemple, le bromoéthane \( (CH_3CH_2Br) \) réagit avec l'hydroxyde de potassium pour former de l'éthanol \( (CH_3CH_2OH) \) et un ion bromure. L'ion bromure réagit ensuite avec l'ion potassium pour former du bromure de potassium. Cela peut être démontré par l'équation globale suivante :
$$ CH_3CH_2Br + KOH \rightarrow CH_3CH_2OH + KBr $$
N'oublie pas d'utiliser les formules structurelles lorsque tu rédiges des équations pour montrer la structure de la molécule et la position du nouveau groupe fonctionnel.
Un autre exemple est l'attaque nucléophile du 2-chloro-2-méthylpropane \( (CH_3CCl(CH_3)CH_3) \) par l'hydroxyde de sodium, formant du 2-méthylpropan-2-ol \( (CH_3COH(CH_3)CH_3 ) \) et du chlorure de sodium. Voici l'équation :
$$ CH_3CCl(CH_3)CH_3 + NaOH \rightarrow CH_3CCl(CH_3)CH_3 + NaCl $$
Il existe un autre type de réaction impliquant des halogénoalcanes et des ions hydroxyde. Il s'agit d'une réaction d'élimination. Dans les réactions d'élimination, l'ion hydroxyde agit comme une base au lieu d'un nucléophile. Elle produit un alcène, de l'eau et un ion halogénure. Les conditions sont également légèrement différentes : nous utilisons de l'hydroxyde de potassium (ou de sodium) éthanolique chaud et concentré.
Explore cette question dans le résumé de cours " Réactions d'élimination".
Le cyanure de potassium ou de sodium \( (KCN \space ou \space NaCN) \) réagit avec les halogénoalcanes en solution éthanolique pour former un nitrile \( (RCN) \) et un ion halogénure. Les nitriles possèdent le groupe fonctionnel \( -CN \) , qui contient une triple liaison \( C \equiv N \) . Une fois encore, le mélange réactionnel est chauffé à reflux. Cette réaction de substitution nucléophile est importante sur le plan industriel car elle permet d'augmenter la longueur de la chaîne carbonée.
Par exemple, le chlorométhane \( (CH_3Cl) \) chauffé dans du cyanure de potassium éthanolique produit de l'éthanenitrile \( (CH_3CN) \) et un ion chlorure. L'ion chlorure réagit ensuite avec le potassium pour former du chlorure de potassium. L'équation globale est la suivante :
$$ CH_3Cl + KCN \rightarrow CH_3CN + KCl $$
Pour plus d'informations sur les nitriles, voir le résumé de cours qui leur est spécifiquement dédié : Nitriles.
La réaction entre les halogénoalcanes et un excès d'ammoniac \( (NH_3) \) produit une amine primaire \( (RNH_2) \) , un ion halogénure et un ion ammonium \( (NH_4^+ ) \) . Les amines sont des dérivés de l'ammoniac, où un ou plusieurs des atomes d'hydrogène ont été remplacés par un groupe alkyle.
Fig.6- Ammoniac, une amine primaire et l'ion ammonium.
Nous avons vu plus tôt dans l'article que bien que l'ammoniac ne soit pas un ion négatif, il reste un nucléophile. Il contient un atome partiellement chargé négativement, \( N^{ \delta -} \) , avec une paire d'électrons solitaires. Lorsque l'atome d'azote fait don de sa paire d'électrons solitaires à l'atome de carbone, l'atome d'azote devient chargé positivement. Ce n'est pas génial pour la molécule - elle veut être neutre, car c'est beaucoup plus stable.
Pour résoudre ce problème, elle expulse un atome d'hydrogène, mais conserve la paire d'électrons liée. L'atome d'hydrogène est maintenant un ion positif et réagit avec une deuxième molécule d'ammoniac pour former un ion ammonium positif. Cet ion ammonium positif peut alors réagir avec l'ion bromure produit dans la réaction de substitution, formant un sel d'ammonium. Globalement, la réaction nécessite deux moles d'ammoniac pour chaque mole d'halogéno-alcane.
La réaction s'effectue à chaud dans une solution éthanolique, dans un récipient scellé sous pression.
Par exemple, le bromoéthane \( (CH_3CH_2Br ) \) et l'ammoniac réagissent ensemble pour former de l'éthanamine \( (CH_3CH_2NH_2) \) , un ion bromure et un ion ammonium. L'ion ammonium réagit avec l'ion bromure pour former un sel d'ammonium, le bromure d'ammonium \( (NH_4Br) \) :
$$ CH_3CH_2Br + 2NH_3 \rightarrow CH_3CH_2NH_2 + NH_4Br $$
Considérons maintenant la réaction des halogéno-alcanes avec une solution de nitrate d'argent \( (AgNO_{3(aq)} \) mélangée à de l'éthanol. Nous utilisons ce procédé pour identifier l'halogène présent dans l'halogéno-alcane. L'éthanol agit comme un solvant et permet à tout de se dissoudre, tandis que l'eau de la solution de nitrate d'argent agit comme un nucléophile, produisant un alcool, un ion hydrogène \( (H^+) \) et un ion halogénure \( (X^-) \) . L'ion halogénure réagit ensuite avec le nitrate d'argent pour former un précipité coloré, et la couleur du précipité nous donne l'identité de l'halogène.
Halogène présent | Réaction avec \( AgNO_{3(aq)} \) | Détails supplémentaires |
Fluor | Pas de réaction observable | Pas de précipité car \( AgF \) est soluble dans l'eau |
Chlore | Précipité blanc | |
Brome | Précipité crème | |
Iode | Précipité jaune |
Cette réaction produisant un précipité visible, elle constitue un excellent moyen de comparer les vitesses de réaction relatives de différents halogéno-alcanes :
Enfin, nous aborderons l'importance des réactions de substitution nucléophile.
On peut reconnaître une réaction de substitution dans le cas où un groupe fonctionnel d'une molécule est remplacé par un groupe fonctionnel différent.
L'équation qui correspond à la réaction de substitution est :
RCH2X + Nu- → RCH2Nu + X-
Pour faire une réaction d'addition, il faut faire réagir un alcène avec une espèce chimique électrophile.
Les alcènes pourront soumettre des réactions d'addition (ouverture de la double liaison C=C par rupture de la double liaison C=C par rupture de la liaison π).
des utilisateurs ne réussissent pas le test de Réaction de substitution ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !