L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Ah, les électrons. Ces minuscules particules subatomiques qui tournent en rond sur leurs orbites. Ils sont près de \( 2000 \) fois plus légers qu'un proton et n'ont qu'un tiers de leur diamètre, mais ils sont extraordinairement importants.Tu te rappelleras certainement des particules fondamentales : si le nombre de protons indique l'élément de l'atome, le nombre d'électrons et leur disposition…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenAh, les électrons. Ces minuscules particules subatomiques qui tournent en rond sur leurs orbites. Ils sont près de \( 2000 \) fois plus légers qu'un proton et n'ont qu'un tiers de leur diamètre, mais ils sont extraordinairement importants.
Tu te rappelleras certainement des particules fondamentales : si le nombre de protons indique l'élément de l'atome, le nombre d'électrons et leur disposition donnent sa réactivité et ses propriétés chimiques. Ce sont là des rôles majeurs pour des particules aussi minuscules ! Mais comment découvrir la configuration électronique d'un atome ou d'un ion ?
La configuration électronique, est la disposition des électrons dans les couches, sous-couches et orbitales de l'atome.
Chaque atome possède des électrons dans son nuage électronique. Le nombre d'électrons dans le nuage électronique d'un atome est le numéro atomique de cet élément. Ces électrons sont disposés dans des niveaux d'énergie spécifiques autour du noyau.
Si tu n'es pas familier avec les termes ci-dessus, nous te recommandons de consulter le résumé de cours couches électroniques pour en savoir un peu plus. Pour l'instant, nous nous contenterons d'un résumé rapide.
Les couches d'électrons sont également appelées niveaux d'énergie. Chaque couche a un nombre quantique principal spécifique. Plus les couches s'éloignent du noyau, plus leur nombre quantique principal augmente et plus leur niveau d'énergie est élevé.
Les sous-couches sont des divisions à l'intérieur de chaque couche. Elles ont également des niveaux d'énergie différents , la couche \( s \) a l'énergie la plus basse, puis \( p \) , puis \( d \) , puis \( f \) . Chaque couche contient un nombre différent d'orbitales. Par exemple, la couche \( s \) n'a qu'une seule orbitale, tandis que les couches \( p \) en ont trois et les couches \( d \) cinq.
Fig. 1- Un graphique montrant les différents niveaux d'énergie des couches, sous-couches et orbitales.
Les orbitales d'électrons sont des régions de l'espace où se trouve un électron dans \( 95 \% \) des cas. Chaque orbitale peut contenir au maximum deux électrons.
Ces électrons doivent avoir des spins différents : l'un a un spin ascendant, l'autre un spin descendant. Les orbitales ont également des formes différentes en fonction de leur sous-couche.
Si nous rassemblons tout cela, la configuration électronique est simplement le nombre d'électrons présents dans chaque orbitale atomique, ainsi que la couche et la sous-couche dans lesquelles ils se trouvent.
Il existe deux règles principales que tu dois connaître et qui t'aideront à déterminer la configuration électronique d'un atome. Il s'agit de la règle de Hund et du principe d'Aufbau. Nous allons les examiner successivement avant de les mettre en pratique à l'aide de quelques exemples.
L'ordre dans lequel les électrons sont placés dans les orbitales est basé sur l'ordre de leur énergie. C'est ce qu'on appelle le principe de l'Aufbau. Les orbitales de plus faible énergie se remplissent en premier .
Tout d'abord, les électrons remplissent d'abord la sous-couche ayant le niveau d'énergie le plus bas. Les atomes aiment être dans un état d'énergie plus faible et les électrons ne sont pas différents. En général, cela signifie qu'il faut d'abord remplir les couches avec les nombres quantiques principaux les plus bas et, à l'intérieur de la couche, remplir d'abord la couche \( s \) , puis la couche \( p \) , puis la couche \( d \) . Mais souviens-toi d'une exception sournoise : le \( 3d \) a un niveau d'énergie inférieur au \( 4s \) ! Cela signifie qu'il sera rempli en premier. Le diagramme ci-dessous te rappelle les niveaux d'énergie des différentes sous-couches.
Fig. 2- L'énergie croissante des sous-couches électroniques.
Les électrons ne s'entendent pas vraiment entre eux. C'est logique : ce sont des particules négatives, et si tu en places deux près l'un de l'autre, ils se repousseront assez fortement. C'est pourquoi, à l'intérieur des sous-couches, les électrons préfèrent occuper leur propre orbitale s'ils le peuvent, et remplissent donc d'abord une orbitale vide.
Ces deux règles constituent les bases de la configuration des électrons. Mais avant d'essayer de calculer les configurations électroniques de quelques éléments, nous devons d'abord apprendre à représenter la configuration électronique.
Nous avons deux façons différentes de représenter la configuration électronique :
La notation standard.
La forme de boîte.
La première façon de représenter la configuration électronique est la notation standard. Il s'agit sans doute de la méthode la plus simple : il suffit de dresser la liste des couches électroniques et d'indiquer le nombre d'électrons qu'elles contiennent par un chiffre en exposant. Cependant, tu n'as pas à te soucier des sous-couches vides - tu peux simplement les laisser de côté.
Le carbone possède deux électrons dans chacune des sous-couches \( 1s \) , \( 2s \) et \( 2p \) . Écris sa configuration électronique en utilisant la notation standard.
C'est assez simple. Nous écrivons les noms des sous-couches sur une ligne et utilisons des nombres en exposant pour indiquer le nombre d'électrons qu'elles contiennent. Dans ce cas, chacune des trois sous-couches mentionnées ne possède que deux électrons : \( 1s^{2} \ 2s^{2} \ 2p^{2} \) .
Lorsque l'on représente les configurations électroniques d'éléments plus lourds, écrire toutes les différentes sous-couches devient assez fatigant. Il existe un moyen de contourner ce problème : si tu sais qu'une espèce possède le même nombre d'électrons qu'un gaz noble, avec quelques électrons supplémentaires, tu écris le nom du gaz noble entre crochets et tu ajoutes les sous-couches électroniques supplémentaires comme d'habitude.
Le strontium a la même configuration électronique que le krypton, mais avec deux électrons supplémentaires dans la sous-couche \( s \) . Utilise la notation standard abrégée pour représenter sa configuration électronique.
Une fois encore, c'est très simple : il suffit d'écrire \( [Kr] \ 5s^{2} \) .
La forme de boîte est une façon un peu plus longue de représenter la configuration électronique, mais contrairement à la notation standard, elle montre la position des électrons dans les orbitales individuelles.
Tu représentes les différentes orbitales de chaque sous-couche à l'aide de cases carrées, et tu montres les électrons à l'aide de flèches verticales. Il est traditionnel de dessiner le premier électron de chaque orbitale vers le haut, et le second vers le bas.
Voici la configuration électronique du carbone \( ( 1s^{2} \ 2s^{2} \ 2p^{2} ) \) sous forme de boîte :
Fig. 3- Configuration électronique du carbone à l'aide d'une boîte.
Nous verrons ensuite comment nous avons mis au point cette configuration électronique.
Nous allons maintenant mettre nos nouvelles connaissances à l'épreuve à l'aide de quelques exemples. Tout d'abord, nous allons déterminer la configuration électronique des éléments.
Utilise le principe de l'Aufbau et la règle de Hund pour déterminer la configuration électronique du carbone sous forme de boîte.
Tu remarqueras que c'est l'exemple que nous avons donné précédemment, mais nous allons maintenant t'expliquer comment le faire.
Le carbone a un nombre de protons de \( 6 \) , ce qui signifie qu'il contient également six électrons. Selon le principe de l'Aufbau, les électrons remplissent d'abord les sous-couches du niveau d'énergie le plus bas. Par conséquent, deux électrons vont d'abord remplir l'orbitale simple de \( 1s \) . Deux autres électrons rempliront ensuite l'orbitale unique de \( 2s \) , la sous-couche dont le niveau d'énergie est le plus bas suivant. Il reste donc deux électrons à placer en \( 2p \) . Cependant, selon la règle de Hund, les électrons préféreront se placer dans des orbitales séparées à l'intérieur d'une couche secondaire. La configuration électronique globale est présentée ci-dessous.
Fig. 4- Configuration électronique du carbone à l'aide de la forme de boîte.
Un autre exemple est le sodium.
Donne la configuration électronique du sodium en utilisant la notation standard.
Le sodium possède onze électrons. Comme le carbone, ses deux premiers électrons remplissent \( 1s \) et les deux suivants remplissent \( 2s \) . Les six électrons suivants remplissent \( 2p \) , ce qui laisse un électron. Celui-ci va dans le \( 3s \) , le niveau d'énergie le plus bas suivant, comme indiqué :
\( 1s^{2} \ 2s^{2} \ 2p^{6} \ 3s^{1} \)
Suivant : l'oxygène.
Donne la configuration électronique de l'oxygène en utilisant la forme de boîte.
L'oxygène possède huit électrons. Ses deux premiers électrons occupent \( 1s \) , tandis que ses deux seconds occupent \( 2s \) . Ses quatre suivants vont dans \( 2p \) . Grâce à la règle de Hund, les trois premiers de ces quatre se trouvent dans des orbitales séparées. Cependant, la sous-couche \( 2p \) ne possède que trois orbitales électroniques, de sorte que le quatrième et dernier électron doit se dédoubler et partager une orbitale déjà occupée :
Fig. 5- Configuration électronique de l'oxygène à l'aide de la forme de boîte.
La position d'un élément sur le tableau périodique dépend de la sous-couche dans laquelle se trouve son électron le plus externe. Par exemple, un atome neutre du groupe \( 2 \) a toujours son électron extérieur dans une sous-couche \( s \) , tandis qu'un métal de transition a son électron extérieur dans une sous-couche \( d \) . Ceci est illustré ci-dessous.
Fig. 6- Un diagramme de du tableau périodique qui montre comment la position d'un élément est liée à la sous-couche dans laquelle se trouve son électron externe.
Pour trouver la configuration électronique d'un atome, tu dois d'abord connaître le nombre d'électrons qu'il possède. Le numéro atomique de l'aluminium étant de \( 13 \) , il possède \( 13 \) électrons . Tu répartis ensuite les électrons entre les différentes orbitales. Les deux premiers électrons de l'aluminium se trouvent dans l'orbitale \( 1s \) , et les deux électrons suivants dans l'orbitale \( 2s \) . Les six électrons suivants occupent l'orbitale \( 2p \) de la deuxième couche (cela fait dix électrons jusqu'à présent, il en reste trois). Ensuite, les électrons \( 11 \) et \( 12 \) occupent l'orbitale \( 3s \) . Enfin, le dernier électron occupe l'orbitale \( 3p \) . La configuration électronique de l'aluminium est \( 1s^{2} \ 2s^{2} \ 2p^{6} \ 3s^{2} \ 3p^{1} \) . La configuration électronique de l'état fondamental est \( [Ne] \ 3s^{2} \ 3p^{1} \) .
Nous savons comment remplir les sous-couches et les orbitales avec des électrons pour former des atomes neutres, mais comment gagner ou perdre des électrons supplémentaires pour former des ions ?
Lorsqu'on gagne des électrons, la règle de Hund et le principe de l'Aufbau sont suivis comme d'habitude. Cela forme un anion négatif.
Lorsqu'ils perdent des électrons, les électrons du niveau d'énergie le plus élevé sont perdus en premier - donc dans l'ordre inverse du remplissage. Cela forme un cation positif. Cependant, il existe une autre exception sournoise à la règle : les électrons \( 4s \) sont perdus avant les électrons \( 3d \) .
Prenons un exemple.
Donne la configuration électronique des ions \( Ca^{2+} \) .
Les atomes de calcium, \( Ca^{2+} \) , ont la configuration électronique \( 1s^{2} \ 2s^{2} \ 2p^{6} \ 3s^{2} \ 3p^{6} \ 4s^{2} \) . Lorsqu'ils perdent des électrons, ils les perdent d'abord du niveau d'énergie le plus élevé. Dans ce cas, il s'agit de \( 4s \) . Les ions \( Ca^{2+} \) ont perdu deux électrons et ont donc la configuration électronique \( 1s^{2} \ 2s^{2} \ 2p^{6} \ 3s^{2} \ 3p^{6} \ 4s^{0} \) Cela peut également s'écrire simplement \( 1s^{2} \ 2s^{2} \ 2p^{6} \ 3s^{2} \ 3p^{6} \) .
Tu as probablement deviné que, bien que la chimie soit une matière logique, il y a toujours quelques cas qui semblent ignorer toutes les règles standards. Malheureusement, tu dois les apprendre - même si prendre le temps de comprendre pourquoi ils se comportent mal peut t'aider à t'en souvenir.
Prendre le chrome. Le chrome, \( Cr \) , possède vingt-quatre électrons et la configuration \( 1s{2} \ 2s^{2} \ 2p^{6} \ 3s^{2} \ 3p^{6} \ 4s^{1} \ 3d^{5} \) . Attends une seconde - pourquoi n'y a-t-il qu'un seul électron dans la sous-couche \( 4s \) ? On s'attendrait à ce que la configuration du chrome soit \( 1s{2} \ 2s^{2} \ 2p^{6} \ 3s^{2} \ 3p^{6} \ 4s^{2} \ 3d^{4} \) ! Eh bien, c'est parce que les sous-couches \( 4s \) et \( 3d \) sont très similaires en termes de niveau d'énergie. L'électron solitaire en 4s \( 4s \) ne subit aucune répulsion car il n'est pas apparié, et cette répulsion électron-électron réduite compense le fait qu'il y a un électron supplémentaire dans le niveau d'énergie légèrement plus élevé de la \( 3d \) Les atomes aiment être dans l'état d'énergie le plus bas possible.
De même, le cuivre, Cu, a la configuration \( 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{1} 3d^{10} \) et non \( 1s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{6} 4s^{2} 3d^{9} \) Il s'agit là encore d'un arrangement à énergie légèrement réduite en raison de l'absence de répulsion électron-électron.
Fig. 7- Un diagramme montrant les configurations attendues et observées du chrome et du cuivre. Note que les deux éléments n'ont qu'un seul électron en 4s. Cela s'explique par le fait que l'absence de répulsion électron-électron crée un arrangement légèrement moins énergétique.
Pour conclure ce résumé de cours, nous allons examiner brièvement certaines des évidences de la configuration électronique :
Les spectres d'émission atomique nous indiquent l'existence de différents niveaux d'énergie quantique. Les spectres d'émission atomique sont produits lorsque des électrons excités émettent de la lumière et retournent à leur état fondamental, qui est leur niveau d'énergie le plus bas. La longueur d'onde et la fréquence de la lumière dépendent toutes du niveau d'énergie de l'électron.
Les énergies d'ionisation successives nous donnent également la confirmation de l'existence de couches électroniques. Des sauts importants entre les énergies d'ionisation successives d'un élément indiquent que l'électron est perdu à partir d'une couche électronique différente, plus proche du noyau.
Les énergies de la première ionisation nous donnent des indications sur les sous-couches et les orbitales. Par exemple, la diminution de l'énergie de la première ionisation entre les groupes \( 2 \) et \( 3 \) montre qu'il existe des sous-couches \( s \) et \( p \) , tandis que la diminution de l'énergie de la première ionisation entre les groupes \( 5 \) et \( 6 \) montre que la sous-couche \( p \) contient trois orbitales.
Ne t'inquiète pas si tu n'as jamais rencontré l'énergie d'ionisation auparavant. Tu peux l'explorer de manière beaucoup plus approfondie dans les résumés Énergie par ionisation et Tendances en matière d'énergie par ionisation.
La configuration d'électron, également appelée configuration électronique d'un atome, décrit la disposition des électrons dans un atome.
Les règles de configuration électronique d'un atome décrient la façon dans laquelle les électrons sont placés dans les orbitales.
L'ordre configuration électronique d'un atome est basé sur l'ordre de leur énergie.
Les électrons remplissent les couches en fonction de leurs niveaux d'énergie, comme le dictent le principe d'Aufbau et la règle de Hund. Les électrons remplissent d'abord les sous-couches dont le niveau d'énergie est le plus faible et, à l'intérieur de chaque sous-couche, ils préfèrent occuper leur propre orbitale.
La position d'un élément sur le tableau périodique dépend de la sous-couche dans laquelle se trouve son électron le plus externe.
La configuration électronique à l'état fondamental d'aluminium est \( 1s^{2} \ 2s^{2} \ 2p^{6} \ 3s^{2} \ 3p^{1} \) .
Lors de la formation d'ions, les électrons sont généralement perdus en premier à partir de la sous-couche de niveau d'énergie supérieur.
Les exceptions aux règles de remplissage proviennent du fait que les sous-couches \( 4s \) et \( 3d \) ont un niveau d'énergie similaire. Il faut toujours se rappeler que la sous-couche \( 4s \) se remplit avant la sous-couche \( 3 d \) .
Les énergies de la première ionisation et les énergies d'ionisation successives nous donnent des évidences sur la configuration électronique.
La configuration électronique, également appelée structure électronique est la disposition des électrons en orbitales autour d'un noyau atomique.
La configuration électronique de Cl est :
1s2 2s2 2p6 3s2 3p5
Pour savoir le nombre d'électrons par couche :
La première couche (la plus proche du noyau) peut contenir deux électrons. La deuxième couche peut contenir 8 électrons. La troisième couche peut contenir 32 électrons.
La configuration électronique d'un atome est la représentation de la répartition des électrons de ses atomes sur différentes orbitales atomiques. Les électrons sont remplis en fonction des niveaux d'énergie de l'orbitale. L'orbitale d'énergie la plus basse se remplit d'abord.
des utilisateurs ne réussissent pas le test de Configuration électronique ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter