Se connecter Inscris-toi gratuitement !
L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Dynamique

Pourquoi les objets se déplacent-ils comme ils le font ? Qu'est-ce qui fait qu'un objet se déplace ? Qu'est-ce qui fait qu'il se déplace plus vite ou moins vite ? L'étude de la dynamique des forces apporte des réponses à ces questions. Les forces sont responsables pour les changements de mouvement, et les principes de la dynamique expliquent comment.

Dynamique : L'étude de la relation entre les forces et le mouvement.

Pour connaître la dynamique, il faut comprendre le concept de force et les lois du mouvement de Newton. Dans la suite, nous allons les exposer ainsi que les représentations des forces, et comment s'en servir pour résoudre des problèmes de mécanique dynamique.

Force

Force : Une action de tirer ou pousser due à l'interaction entre deux objets ou plus.

Si ton frère te pousse, il exerce une force sur toi. Si tu promènes un chien, il est susceptible d'exercer une force sur toi en tirant sur la laisse.

Un objet ne peut exercer de force sur lui-même. Une force nécessite au moins deux objets, y compris des choses comme des surfaces ou des fluides.

Il y a de nombreux différents types de forces. Les deux exemples précédents sont des forces de contact, car les corps qui interagissent sont en contact. Parmi ce type de forces, on compte également les forces de frottement solide et de frottement fluide, la force de rappel d'un ressort, la poussée d'Archimède et la réaction normale d'un support. Il existe aussi des forces à distance, pour lesquelles les corps qui interagissent n'ont pas besoin de se toucher, comme la force gravitationnelle, la force électrique et la force magnétique. L'image ci-dessous représente toutes ces forces.

Dynamique, types de forces, StudySmarter

Figure 1. Types de forces

À chaque fois qu'un objet démarre, s'arrête, ralentit, accélère ou change de direction, une force créé ce changement. Tous ces changements sont décrits par une accélération non nulle. Donc dès qu'un objet a une accélération non nulle, on sait qu'une force est appliquée dessus.

Les forces sont des vecteurs, ce qui signifie qu'elles ont une norme, un point d'application, une direction et un sens. La norme détermine avec quelle intensité les objets sont tirés, le point d'application détermine en quel point s'applique la force, la direction donne la droite selon laquelle la force est dirigée et le sens précise vers quelle côté la force est dirigée (pour une direction horizontale, le sens peut être vers la droite ou vers la gauche). La norme, la direction et le sens de la force sont directement reliés à la norme, la direction et le sens de l'accélération. Deux forces peuvent également avoir des sens opposés et se compenser donc il est possible qu'un objet soit immobile bien que des forces s'appliquent sur lui.

Puisque les forces produisent des accélérations, une force est mesurée par la quantité d'accélération qu'elle produit. L'unité du système international (SI) pour la force est le Newton (N), ce qui correspond au \( \frac{kg.m}{s²} \). On peut comprendre cette unité en prenant une masse unitaire : si on pousse une masse de 1 kg avec une force de 1 N, alors c'est comme si on lui confère une accélération de 1\( \frac{m}{s²} \) dans la direction de la force.

Expression de forces courantes

La force de frottement solide, la force de rappel d'un ressort et la force du poids ont toutes des expressions que l'on peut utiliser pour les calculer. Pour trouver d'autres forces dans les exercices comme la tension du fil et la réaction normale du support, il faut utiliser les autres forces. Pour cela, on utilise les lois du mouvement de Newton et les représentations des forces, comme décrit plus loin.

Force de frottement solide

On calcule la force de frottement solide en utilisant les deux formules suivantes, où \( \mu_s \) est le coefficient de frottement statique, \( \mu_d \) est le coefficient de frottement dynamique et \( F_n \) est la réaction normale du support. Dans le cas où l'objet est immobile, on a : \[ |F_f| \leq \mu_s \, |F_n| \] Cette force empêche l'objet de se déplacer. Elle vient compenser toute autre force qui tendrait à mettre l'objet en mouvement, et ce, dans la limite où ces forces restent inférieures au produit \( \mu \: |F_n| \). Dans le cas où l'objet est en mouvement, la formule devient : \[ |F_f| = \mu_d \: |F_n| \]

Les forces ont comme unité le Newton (N) et le coefficient de frottement est sans dimension. Ces deux lois sont appelées les lois de Coulomb du frottement solide.

Force de rappel du ressort

L'expression de la force de rappel d'un ressort est donnée par la loi de Hooke : \[ |F_s| = k|x| \] La variable \( k \) est la raideur du ressort et représente à quel point le ressort est rigide. Son unité est le N/m. La variable \( x \) est une distance qui mesure de combien le ressort à été comprimé ou étiré (en mètres).

Force du poids

La force de pesanteur due à la gravité aussi appelée poids, est égale à la masse (en kg) multiplié par l'accélération de la pesanteur (qui sur Terre vaut 9,8 m/s²) : \[ \vec{F_g} = m \vec{g} \]

Il est important de se souvenir que la masse n'est pas la même chose que le poids. La masse est mesurée en kilogrammes et ne change pas en fonction de la position, tandis que le poids est une force (mesurée en Newtons) égale à la masse fois l'accélération de la pesanteur, et donc change en fonction du champ gravitationnel dans lequel l'objet se trouve.

Lois du mouvement de Newton

Énoncé des lois de Newton

Les lois du mouvement de Newton expliquent la relation entre le mouvement d'un objet et les forces qui agissent sur lui. Les trois lois de Newton sont :

Première loi de Newton : Principe d'Inertie

Dans un référentiel galiléen, si la somme des forces extérieures appliquées à un objet est nulle, celui-ci se déplace à vitesse et direction constante (mouvement rectiligne et uniforme) ou alors il est immobile.

Deuxième loi de Newton : Principe fondamental de la dynamique (PFD)

Dans un référentiel galiléen, l'accélération d'un objet dépend de la masse et des forces qui s'appliquent sur lui selon la relation :\[ \sum \vec{F} = m \vec{a} \]

Troisième loi de Newton : Principe des Actions Résultantes

Si un objet exerce une force sur un deuxième objet, le deuxième objet exerce une force de même norme dans le sens opposé sur le premier objet.

La notion de référentiel

Les lois de Newton mentionnent la notion de référentiel galiléen. De quoi s'agit-il ? Tout d'abord, il faut avoir à l'esprit que pour étudier un mouvement, on doit nécessairement prendre une référence, ou référentiel, c'est-à-dire un objet par rapport auquel on repère le mouvement.

Prenons l'exemple du mouvement de la Lune. Par rapport à la Terre, la Lune se déplace sur une orbite à peu près circulaire. En revanche, par rapport au Soleil, la Lune a une trajectoire bien plus complexe, car elle suit le mouvement de révolution de la Terre autour du Soleil tout en tournant simultanément autour de la Terre.

Maintenant, tous les référentiels ne sont pas équivalents. Il existe une classe de référentiels bien particuliers dits galiléens, pour lesquels le principe d'inertie s'applique.

Pour être galiléen, un référentiel doit avoir un mouvement rectiligne et uniforme par rapport à un autre référentiel galiléen. En pratique, on peut considérer comme galiléen le référentiel terrestre qui correspond à tout objet immobile à la surface de la Terre. Comme exemple de référentiel non galiléen, on peut citer le manège. En effet, si on s'assoit et on reste sans bouger sur un siège qui tourne en suivant le mouvement de rotation du manège, on est alors en fait au repos par rapport au manège lui-même. Pourtant, on ressent une force dite centrifuge qui tend à nous éjecter vers l'extérieur et qui est d'autant plus forte que le manège tourne vite. Ainsi, le principe d'inertie n'est pas valable dans ce cas.

Représentation des forces

Pour représenter les forces agissant sur un objet, on trace un schéma qui nous aide à visualiser la situation et à poser les équations qui sont associées. On dessine les vecteurs représentant les forces comme des flèches dans la direction de la force, avec une longueur représentant l'intensité de la force. La figure suivante est un exemple d'un tel schéma :

Dynamique, schéma des forces, StudySmarterFigure 2. Exemple de représentation de forces

Dans la figure, il y a quatre forces qui s'exercent sur l'objet : une force de réaction normale (\( F_n \)) dirigée vers le haut, une force du poids (\( F_g \)) dirigée vers le bas, une force de frottement (\( F_f \)) dirigée vers la gauche et une force de tension (\( T \)) dirigée vers la droite.

Lorsque l'on représente des forces sur une figure, la force du poids est dirigée vers le bas et la force de réaction normale du support est perpendiculaire à la surface.

Représentation des forces et lois de Newton pour résoudre des problèmes

Lorsqu'on représente les forces sur une figure, on peut utiliser les lois de Newton pour comprendre le mouvement d'un objet. En particulier, on utilise la seconde loi de Newton donnée par l'équation : \[ \sum \vec{F} = m \vec{a} \] où la force \( \vec{F} \) est mesurée en Newton, noté N, la masse \( m \) en kg, et l'accélération \( a \) en m/s². Cette équation signifie que la somme vectorielles des forces (aussi appelée force résultante) agissant sur un objet est égale à la masse multiplié par l'accélération.

La force et l'accélération sont tous deux des vecteurs, ce que l'on indique par les flèches au-dessus des lettres. La direction de la force résultante détermine la direction de l'accélération de l'objet. Comme la deuxième loi de Newton est une équation vectorielle, on peut la décomposer suivant les trois différentes directions (par exemple, la somme des forces suivant x est égale à la masse fois l'accélération suivant x). On peut utiliser la relation de Chasles pour faire la somme des forces ou pour décomposer les forces en composantes suivant x, y et z.

La résultante des forces et l'accélération ont la même direction et le même sens. En revanche, cela ne veut pas dire que la résultante des forces a la même direction que le vecteur vitesse. Si un objet se déplace vers le haut mais il est tiré vers le bas par exemple par la gravité, l'accélération est dirigée vers le bas alors que l'objet continue de se déplacer vers le haut pour un temps, bien que de moins en moins vite.

Si une boîte de 25 kg glisse sur un plan incliné d'un angle \( \theta \) = 30\( ^\circ \) et que le coefficient de frottement vaut 0,2, quelle est l'accélération de la boîte ?

Tout d'abord, représentons la situation sur un schéma avec les forces qui s'appliquent sur la boîte :

Dynamique, schéma plan incliné, StudySmarterFigure 3. Représentation des forces dans l'exemple

On a représenté sur la figure : la force de réaction normale du support perpendiculaire au plan incliné, la force de frottement dans le sens opposé au mouvement et la force du poids dirigée vers le bas.

Comme deux des trois forces sont soit perpendiculaires, soit parallèles au plan incliné, il est naturel de prendre comme système de coordonnées l'axe x parallèle au plan incliné et l'axe y perpendiculaire au plan incliné comme représenté sur la figure. Étant donné que le poids est diagonal dans ce repère, on souhaite le décomposer selon x et y, comme indiqué en rouge.

L'angle qui est représenté en rouge entre la perpendiculaire au plan incliné et la verticale vaut également \( \theta \) car si on le prolonge jusqu'au plan incliné, cela donne 90\( ^{\circ} \) ou \(\frac{\pi}{2} rd\). Or pour cela, on a ajouté l'angle opposé à \( \theta \) dans un triangle rectangle, donc un angle qui vaut \( \frac{\pi}{2} - \theta \). En outre, si \( x + ( \frac{\pi}{2} - \theta ) = \frac{\pi}{2} \) alors \( x = \theta \). On utilise ensuite la trigonométrie pour calculer ces composantes : \[ F_{gx} = F_g \sin \theta \] \[ F_{gy} = F_g \cos \theta \]

Pour trouver l'accélération de la boîte, on écrit alors la deuxième loi de Newton dans la direction x : \[ -F_f + F_{gx} = ma_x \] Pour trouver la force de frottement, on utilise l'expression écrite précédemment. Étant donné que la boîte glisse, on sait que la force de frottement vaut le coefficient de frottement multiplié par la réaction normale : \[ |F_f| = \mu |F_n | \] Pour trouver la réaction normale, on doit utiliser l'équation en y. Puisque que la boîte n'accélère pas suivant la direction y, la somme des forces dans cette direction vaut zéro : \[ F_n - F_{gy} = 0 \] On peut ainsi trouver la réaction normale en remplaçant \( F_{gy} \) par \( mg\cos \theta \) : \[ F_n = mg\cos \theta \] En injectant cela dans la première équation et en remplaçant \( F_{gx} \) par \( mg\sin \theta \) : \[ -(\mu mg\cos \theta) + ng\sin \theta = ma \] On peut ainsi résoudre l'équation en divisant par la masse et en réarrangeant les termes : \[ a = g(\sin \theta - \mu \cos \theta ) \] Enfin, on peut faire une application numérique à l'aide des données de l'énoncé : \[ a = 9,\!8 (\sin 30^\circ - 0,\!2 \cos 30^\circ ) \] \[ a = 3,\!2 \,\text{m}/\text{s}² \] La boîte glisse vers le bas le long du plan incliné avec une accélération de 3,2 m/s².

Dynamique - Points clés

  • La dynamique est l'étude de la relation entre les forces et le mouvement.
  • Une force correspond à l'action de pousser ou tirer et provient de l'interaction entre deux objets ou plus.
  • Les forces sont des vecteurs, ce qui signifie qu'ils ont un point d'application, une direction, un sens et une norme.
  • Les forces induisent une accélération. La direction de la force résultante donne la direction de l'accélération.
  • Les frottements, la force de rappel et le poids ont des expressions particulières qui permettent de les calculer. En revanche, ce n'est pas le cas de la tension et de la réaction normale du support.
  • On représente les forces agissant sur un objet à l'aide d'un schéma.
  • On utilise le schéma de la situation et les lois de Newton pour résoudre des problèmes qui font intervenir des forces.

Questions fréquemment posées en Dynamique

La dynamique est l'étude de la relation entre le mouvement et les forces.

Une force est une action de tirer ou pousser due à l'interaction de deux objets ou plus.

Une force a pour effet de créer une accélératon.

Questionnaire final de Dynamique

Question

Qu'est-ce que la dynamique ?

Montrer la réponse

Réponse

C'est l'étude de la relation entre les forces et le mouvement.

Montrer la question

Question

Comment résout-on un problème de dynamique ?

Montrer la réponse

Réponse

On réalise un schéma de la situation. On définit le système étudié et le référentiel utilisé. On effectue un bilan des forces que l'on représente sur le schéma. Enfin, on applique la deuxième loi de Newton et on résout les équations du mouvement.

Montrer la question

Question

Qu'est-ce qu'une force ?

Montrer la réponse

Réponse

C'est une action qui consiste à pousser ou tirer un objet dans une certaine direction avec une certaine intensité.

Montrer la question

Question

Quel est l'effet d'une force ?

Montrer la réponse

Réponse

Une force est susceptible de créer une accélération et donc de modifier le vecteur vitesse.

Montrer la question

Question

Citer deux catégories de forces.

Montrer la réponse

Réponse

Les forces de contact et les force à distance.

Montrer la question

Question

Parmi les forces suivantes, lesquelles sont des forces de contact ?

Montrer la réponse

Réponse

Force de frottement

Montrer la question

Question

Parmi les forces suivantes, lesquelles sont des forces à distance ?

Montrer la réponse

Réponse

Force magnétique

Montrer la question

Question

Quelles sont les caractéristiques des vecteurs ?

Montrer la réponse

Réponse

Un point d'application, une direction, un sens et une norme.

Montrer la question

Question

Quelle est la différence entre la direction et le sens d'un vecteur ?

Montrer la réponse

Réponse

La direction donne la droite suivant laquelle se trouve le vecteur tandis que le sens précise vers quelle extrémité ou demi-droite le vecteur se dirige. 

Montrer la question

Question

Si un vecteur est vertical, on connaît

Montrer la réponse

Réponse

sa direction

Montrer la question

Question

Si un vecteur est orienté vers la droite, on connaît

Montrer la réponse

Réponse

son sens

Montrer la question

Question

Quelles sont les lois de Coulomb du frottement solide ?

Montrer la réponse

Réponse

 \( |F_f| \leq \mu_s \, |F_n| \) lorsque l'objet est immobile (statique)


\( |F_f| = \mu_d \: |F_n| \) lorsque l'objet est en mouvement (dynamique)


Montrer la question

Question

Quelles sont les trois lois de Newton ?

Montrer la réponse

Réponse

Le principe d'inertie, le principe fondamental de la dynamique et le principe des actions réciproques.

Montrer la question

Question

Que dit le principe d'inertie ?

Montrer la réponse

Réponse

Dans un référentiel galiléen, tout objet dont la somme des forces est nulle a un mouvement rectiligne et uniforme ou alors pas de mouvement si l'objet est immobile.

Montrer la question

Question

Que dit le principe fondamental de la dynamique ?

Montrer la réponse

Réponse

Dans un référentiel galiléen, l'accélération est reliée à la somme des forces par la relation : \[ m\vec{a} = \sum \vec{F}_{ext} \]

Montrer la question

Question

Que dit le principe des actions réciproques ?

Montrer la réponse

Réponse

Si un objet exerce une force sur un autre objet, alors ce deuxième objet exerce une force opposée sur le premier objet. Par exemple, si je pousse un mur, ce mur me pousse en retour avec la même force mais dans l'autre sens.

Montrer la question

AUTRES THÈMES EN Dynamique
60%

des utilisateurs ne réussissent pas le test de Dynamique ! Réussirez-vous le test ?

lancer le quiz

Complète tes cours avec des thèmes et sous-thèmes disponibles pour chaque matière!

Inscris-toi gratuitement et commence à réviser !