L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Ce n'est que lorsque le grand Einstein est arrivé avec sa nouvelle idée fondée sur les observations de Max Planck concernant le rayonnement du corps noir, que nous avons enfin eu une explication à l'effet photoélectrique. Ce dernier nous a ramené à Newton et a réconcilié sa théorie corpusculaire avec la théorie ondulatoire de la lumière. Es-tu prêt à en savoir…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenCe n'est que lorsque le grand Einstein est arrivé avec sa nouvelle idée fondée sur les observations de Max Planck concernant le rayonnement du corps noir, que nous avons enfin eu une explication à l'effet photoélectrique. Ce dernier nous a ramené à Newton et a réconcilié sa théorie corpusculaire avec la théorie ondulatoire de la lumière.
Es-tu prêt à en savoir plus sur la façon dont Einstein a résolu la question d'une manière très simple, mais élégante ? Reste à l'écoute !
Bien que ses découvertes de la théorie de la relativité restreinte (1905), puis de la théorie de la relativité générale (1915) l'ont conduit à une immense renommée en tant que scientifique du XXᵉ siècle, ce n'est qu'en 1921 qu'Einstein a remporté un prix Nobel reconnaissant ses grandes contributions à la physique théorique, qui n'a même pas été accordé pour l'une des théories mentionnées ci-dessus.
Il a reçu le prix pour avoir expliqué « l'effet photoélectrique » qui a défié un vieux problème que l'on pensait résolu depuis le tout début du XIXᵉ siècle.
Le problème remontait à Newton, qui a répondu à la question : « Quelle est la nature de la lumière ? ». Pour lui, la lumière était composée de toutes petites particules qui n'étaient pas observables à l'œil nu. Il a ainsi utilisé cette théorie pour expliquer la réflexion de la lumière sur un miroir comme étant le choc entre les particules qui composent la lumière et la surface du miroir. Sur cette dernière, les particules vont finalement rebondir en conservant la quantité de mouvement, ce qui les fera rebondir avec le même angle par rapport à la normale au plan, que celui avec lequel elles ont frappé le plan en premier lieu.
À l'époque, de nombreux scientifiques ont critiqué Newton. En effet, si le modèle ci-dessus parvient à expliquer la réflexion de la lumière, il ne parvient pas à expliquer la réfraction de la lumière, où cette dernière se courbe lorsqu'elle passe d'un milieu à un autre. Beaucoup de ces scientifiques (comme Maxwell) pensaient que la lumière est une onde et non une particule (ou composée de particules) car le phénomène de réfraction est une caractéristique des ondes uniquement.
En 1801, un physicien anglais nommé Thomas Young a mené une expérience qui a résolu la question une fois pour toute. L'expérience a montré que l'un des phénomènes qui se produisent avec la lumière est celui des "interférences", qui est un phénomène typique des ondes et non des particules. Cela devrait répondre à la question de la nature de la lumière sans aucun doute, non ? Eh bien, pas exactement ! Tu vois, en 1887, Heinrich Hertz, le physicien auquel nous rendons hommage par l'unité SI de la fréquence, a mené une expérience montrant que lorsque l'on illumine un métal (qui a des électrons libres à la surface), certains des électrons libres sont arrachés du métal. Il voulait comprendre quels étaient les paramètres qui détermineraient les énergies des électrons arrachés. Dans certains cas, il a remarqué qu'aucun électron n'était arraché après avoir éclairé le métal, alors il a pensé que s'il augmentait l'intensité du faisceau, il serait capable de détecter des électrons arrachés ; mais ce n'était pas le cas. À sa grande surprise, il a découvert quelque chose d'encore plus étrange, et c'est qu'il ne détecterait pas les électrons plus énergétiques à moins d'augmenter la fréquence de la lumière ; ce qui n'était pas prévu et n'avait aucune explication si nous devions considérer la lumière comme une onde.
Des électrons sont éjectés d'un matériau métallique après avoir été libérés d'un atome par une lumière à haute énergie qui frappe ce matériau. Les électrons éjectés du matériau sont appelés photoélectrons. Une explication simple de cet effet et des développements importants de la théorie sont énumérés ci-dessous.
Les expériences menées pour mesurer l'effet de la lumière sur l'émission d'électrons par les plaques ont donné deux résultats principaux.
La quantité d'énergie nécessaire pour libérer un électron est appelée "travail d'extraction" ou "travail seuil" (\(\phi\)), qui est différente pour chaque matériau. L'énergie est spécifiée comme le produit de la constante de Planck "\(h\)" et de la fréquence lumineuse "\(\nu\)" : \[\phi=h.\nu\]
La constante de Planck a une valeur de : \[h=6,626\times 10^{-34}J.s\] Le travail seuil est mesuré en électronvolts ou eV (unité d'énergie définie par : \(1eV=1,6 \times 10^{-19}J\))
Les premières expériences décrivant l'effet photoélectrique n'ont pas réussi à expliquer pourquoi l'intensité de la lumière n'affectait pas les électrons émis. La vitesse des électrons ne changeait pas lorsque les lumières étaient plus brillantes ; les électrons ne se déplaçaient plus rapidement que lorsque des fréquences lumineuses plus élevées étaient utilisées.
Albert Einstein a découvert que l'augmentation de l'énergie cinétique affectant les photoélectrons était proportionnelle à l'augmentation de la fréquence de la lumière. Si la conservation doit avoir lieu, alors l'énergie de la lumière est proportionnelle à sa fréquence, et la lumière agit comme une particule dont l'énergie est égale au produit de la constante de Planck '\(h\)' et de la fréquence de la lumière '\(f\)'.
Et si l'énergie de la lumière est transportée par les photons (les particules de la lumière), nous obtenons :\[E_{photon}=h.\nu\]
Si nous relions l'explication d'Einstein concernant la lumière et l'effet photoélectrique découvert par des expériences antérieures, nous arrivons à l'expression qui explique l'effet photoélectrique.
Une certaine quantité d'énergie est nécessaire pour retirer un électron de la plaque métallique. Un photon doit fournir cette quantité minimale d'énergie, appelée travail seuil d'extraction :\[\phi_s=h.\nu_s\]
Si l'énergie dépasse cette valeur minimale, on obtient la fonction de travail plus un excès.\[E=\phi_s + excès\]
L'excédent d'énergie qui est transféré à l'électron est l'énergie du photon sous forme d'énergie cinétique. \[E_{photon} = \phi_s + E_{cin}\] \[h.\nu =h.\nu_s + \frac{1}{2}.m.V^2\]
Selon le modèle corpusculaire de la lumière qui explique l'effet photoélectrique, on peut expliquer l'augmentation de l'intensité d'un faisceau lumineux comme une augmentation du nombre de photons formant le faisceau.
Vous avez une particule émise par une plaque de cuivre qui a une énergie cinétique de 2,0 eV. Vous souhaitez déterminer l'énergie et la fréquence du photon qui a libéré l'électron. \[\phi = 5eV\] Si l'énergie cinétique de l'électron après l'impact du photon est de 2,0 eV, alors l'énergie du photon doit être la somme des deux.\[E_{photon}=5+2=7eV\] Un électronvolt (eV) est égal à \(1,6 × 10^{−19} J\), que nous multiplions par sept. \[E_{photon}=11,22\times 10^{-19} J\] Si l'énergie du photon est égale à la constante de Planck et à la fréquence du photon, nous pouvons remplacer "\(E_{photon}\)" par "\(h.\nu\)". \[\nu=\frac{11,22\times 10^{-19}}{6,62\times 10^{-34}}\] Cela nous donne la fréquence du photon. \[\nu=1,69 \times 10^{15}Hz\]
L'effet photoélectrique est l'effet par lequel des électrons sont éjectés de la surface d'un matériau conducteur après que l'on illumine cette dernière par une lumière de fréquence au moins égale à la fréquence seuil du matériau.
L'effet photoélectrique est l'effet responsable de créer de l'électricité après illumination d'un conducteur par des photons.
L'effet Compton quant à lui, il explique la variation de la fréquence lumineuse après le choc élastique qui se produit quand un photon incident entre en collision avec un électron libre.
L'effet photoélectrique a été expliqué par Albert Einstein.
La radiation électromagnétique.
des utilisateurs ne réussissent pas le test de Effet photoélectrique ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter