L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
Quelle est la nature de la lumière ? C'est la question qui a fasciné les physiciens pendant plusieurs siècles !Newton avait considéré la lumière comme une assemblée de particules. Huygens et Hooke, quant à eux, étaient les fondateurs de la théorie ondulatoire de la lumière.Le conflit restera jusqu'à ce qu'un physicien anglais règle l'affaire pour de bon. Ce n'est autre…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenQuelle est la nature de la lumière ? C'est la question qui a fasciné les physiciens pendant plusieurs siècles !
Newton avait considéré la lumière comme une assemblée de particules. Huygens et Hooke, quant à eux, étaient les fondateurs de la théorie ondulatoire de la lumière.
Le conflit restera jusqu'à ce qu'un physicien anglais règle l'affaire pour de bon. Ce n'est autre que Thomas Young, à l'aide de sa fameuse expérience des fentes.
Es-tu prêt à explorer ce qu'il a découvert ? Dans ce qui suit, nous rentrerons dans les détails de cette expérience pour découvrir la conclusion à laquelle Young a abouti.
En \( 1801 \) , Young réalisa une expérience pour tester la nature de la lumière. Il fixa deux fentes de très mince ouverture et envoya un faisceau lumineux depuis une source placée derrière les fentes dans le plan qui se trouve entre les deux fentes. Il observe ensuite le résultat sur un écran placé à une distance \(d\) des fentes.
Éclaircis une petite fente ou un petit trou par une lampe relativement proche, tu remarqueras qu'à la sortie du trou, le faisceau que tu avais envoyé, diverge rapidement. C'est la diffraction de la lumière !
Fig.1- Le faisceau incident provenant de \(S\) subit une diffraction sur les deux fentes \(S_1\) et \(S_2\), puis les faisceaux croisés provenant de ces dernières subissent le phénomène d'interférence observé sur l'écran.
À sa surprise, Young observa sur l'écran une succession de franges brillantes et sombres, la frange la plus brillante étant au centre. Ce comportement lui a été familier. En effet, cela nous rappelle du phénomène d'interférence caractéristique des ondes et pas des particules.
Les franges brillantes peuvent être expliquées comme une superposition constructive entre les deux faisceaux diffractés des fentes \(S_1\) et \(S_2\) en cette position précise. De même pour les franges sombres, qui peuvent être expliquées comme une superposition destructive entre ces deux faisceaux en une autre position.
Dans le schéma ci-dessus, c'est la zone triangulaire à droite du point d'intersection entre les deux faisceaux qui constitue la zone d'interférence. En d'autres termes, c'est dans les limites de cette zone que l'on observe le phénomène d'interférence lumineuse.
Young conclut que la lumière est une onde !
Christiaan Huygens était l'un des physiciens qui a contribué énormément à l'étude des ondes en physique. Il avait étudié profondément la superposition des ondes et les conditions d'interférences.
Pour observer le phénomène d'interférence, deux conditions indispensables doivent être satisfaites. Celles-ci peuvent être élaborées en détail et ne sont pas des concepts aussi simples qu'ils semblent.
Les deux conditions d'interférences lumineuses sont :
Maintenant, rappelons-nous de la superposition des ondes.
Fig.2- Illustration montrant la superposition constructive (à gauche), et destructive (à droite).
En général, la superposition constructive de deux ondes a lieu quand, en un certain point, le maximum d'amplitude de la première onde se rencontre avec le maximum de la seconde, et de même pour les minimums. Cela les renforce et crée une onde d'amplitude plus importante (égale à la somme des amplitudes des deux ondes superposées).
Par contre, pour la superposition destructive, le maximum d'une onde se rencontre avec le minimum de l'autre, ce qui a pour effet de les affaiblir et de créer une onde de plus faible amplitude.
Prenons un point M quelconque situé dans la zone d'interférence.
La différence de marche optique n'est autre que la différence de la distance que chaque rayon a dû traverser pour atteindre un certain point.
Nous nous trouvons au cas où l'angle \(\theta\) est faible, donc en approximation, \(\sin(\theta) = \tan(\theta)= \theta = \frac{x}{d}\).
D'autre part, nous savons que \(\sin(\theta)= \frac{\delta}{a}\).
Alors, \[\frac{\delta}{a}=\frac{x}{d}\] \[\rightarrow \boxed{\delta = \frac{a \cdot x}{d}}\]
La différence de marche optique peut nous indiquer s'il s'agit d'une frange brillante ou sombre à une certaine position.
La condition d'interférence constructive est que \(\delta\) soit proche de la longueur d'onde, à une constante multiplicative entière. \[\delta\approx m \lambda\] \(m\) étant un entier, et \(\lambda\) la longueur d'onde du faisceau.
Dans ce cas, les deux faisceaux arrivent en phase sur l'écran.
Alors que pour l'interférence destructive, \(\delta\) ne sera pas un multiple entier de la longueur d'onde, mais un multiple impair de la demi-longueur d'onde :\[\delta \approx (2m+1) \frac{\lambda}{2} = (m+\frac{1}{2}) \lambda\]
Dans ce cas, les faisceaux arrivent en opposition de phase sur l'écran.
Comme son nom l'indique, l'interfrange est la distance qui sépare deux franges consécutives et de même nature.
Tout d'abord, il faut avoir à l'esprit que \(m\) représente l'ordre de la frange que nous étudions. Pour la frange centrale la plus brillante, la différence de marche est nulle, donc, \(m\) est nul. Alors, \(m=1\) représente la première frange brillante, et \(m=2\) la deuxième, etc.
Pour les franges sombres il faut faire attention qu'il y aura une petite différence, c'est-à-dire l'ordre \( 1 \) correspondant à \(m=1\) ne représentera pas la première frange sombre. Pourquoi ? Car tout simplement, contrairement aux franges brillantes les franges sombres n'admettent pas une frange centrale à laquelle nous attribuons l'ordre \( 0 \) . Dans le cas des franges brillantes, nous avons la frange centrale qui est une frange brillante, à laquelle nous attribuons l'ordre \( 0 \) et nous commençons à compter d'une en une, les franges qui la suivent. Tandis que dans le cas des franges sombres, c'est à la première frange sombre en elle-même que l'on attribue l'ordre \( 0 \) . Alors dans ce cas, pour \(m=1\), nous parlons de la deuxième frange sombre, etc.
Revenons à l'interfrange.
Soit \(x_m\) la position de la frange d'ordre \(m\), et \
(x_{m+1}\) la position de la frange d'ordre \(m+1\).
La distance entre deux franges brillantes consécutives n'est autre que : \[x_{m+1} - x_m = \frac{(m+1) \lambda d}{a} - \frac{m \lambda d}{a}=\frac{\lambda d}{a}\]
La distance entre deux franges sombres consécutives n'est autre que : \[x_{m+1} - x_m = \frac{(m+1+\frac{1}{2}) \lambda d}{a} - \frac{(m+\frac{1}{2}) \lambda d}{a}=\frac{\lambda d}{a}\]
Nous remarquons que la distance entre deux franges consécutives, qu'elles soient brillantes ou sombres, est la même.
Enfin, il faut mentionner que bien que ce que nous avons présenté ici est une preuve qui affirme que la lumière est une onde, cette preuve satisfait à l'approche classique de la physique. Tu pourras voir que l'histoire ne se termine pas ici. L'action continue avec l'effet photoélectrique ! Si tu es curieux, n'hésite pas à jeter un coup d'œil là-dessus !
On utilise la fente de Young pour observer le phénomène d'interférence et pour montrer le double aspect ondulatoire et corpusculaire des particules.
Pour avoir des interférences avec des fentes de Young , il faut que les ondes provenant des deux sources (fentes) soient synchrones et cohérentes.
des utilisateurs ne réussissent pas le test de Fentes de Young ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter