L'appli tout-en-un pour réviser
4.8 • +11k évaluations
Plus de 3 millions de téléchargements
Télécharger
As-tu déjà pensé au fait que nous ressentons la chaleur du soleil bien qu'il se trouve à près de 100 millions de kilomètres dans le vide spatial ? Et comment la climatisation de ta maison extrait la chaleur de l'air en ne consommant que de l'électricité ? Ces processus relèvent tous deux de la thermodynamique, qui est un domaine de…
Explore our app and discover over 50 million learning materials for free.
Sauvegarde ce cours maintenant et relis-le quand tu auras le temps.
SauvegarderLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenAs-tu déjà pensé au fait que nous ressentons la chaleur du soleil bien qu'il se trouve à près de 100 millions de kilomètres dans le vide spatial ? Et comment la climatisation de ta maison extrait la chaleur de l'air en ne consommant que de l'électricité ? Ces processus relèvent tous deux de la thermodynamique, qui est un domaine de la physique faisant intervenir les propriétés physiques comme la température, le volume et la pression, et permet notamment d'étudier les gaz.
La thermodynamique étudie comment l'énergie est échangée par transfert de chaleur et de travail entre des substances d'un système qui peuvent éventuellement avoir différentes températures. Cette étude est traduite par un développement théorique d'équations, appelé formulaire thermodynamique ; et par plusieurs applications cruciales au domaine industriel. Tandis que la loi des gaz parfaits propose un modèle simple du comportement des gaz, reliant leur volume, leur pression et leur température. Cet article présente les différents sujets couverts par la thermodynamique, chacun d'entre eux pouvant être étudié plus en détail dans les sous-articles correspondants.
La température, le volume et la pression sont des propriétés physiques des objets. Ces propriétés sont étroitement liées les unes aux autres, bien que les différents états de la matière offrent un large éventail de combinaisons possibles de ces grandeurs. Les matériaux solides se dilatent légèrement (augmentant leur volume) lorsque leur température augmente, et se contractent lorsqu'elle diminue. C'est ce que l'on appelle la dilatation thermique. Cette dernière est en général négligeable, mais sur les grandes structures telles que les ponts, des sections mobiles spéciales doivent être incluses pour permettre à la structure de se dilater ou de se contracter.
Figure 1. Une section de dilatation thermique dans un pont. Lorsque les sections du pont en béton chauffent et refroidissent, elles se dilatent et se contractent. La section de dilatation permet au béton de se déplacer sans s'étirer ou se comprimer, ce qui réduit les risques de dommages causés par les contraintes. Wikimedia Commons.
En ce qui concerne les liquides, différentes substances se comportent de différentes manières. L'eau liquide ne change pas de volume ni de pression lorsque sa température change (à moins qu'elle atteigne son point de congélation ou d'ébullition), tandis que le mercure liquide se dilate considérablement lorsqu'il est chauffé.
Dans des conditions non extrêmes, les gaz se comportent de manière prévisible, de sorte que la relation entre la température, le volume et la pression est définie par la loi des gaz parfaits. Pour un volume fixe de gaz, une baisse de la pression entraîne une baisse proportionnelle de la température, tandis qu'une augmentation de la pression entraîne une augmentation proportionnelle de la température. La loi des gaz parfaits est étudiée plus en détail par la suite.
La température d'une substance est proportionnelle à l'énergie cinétique (moyenne) des molécules/atomes qui la composent. On parle également d'agitation thermique. Dans un système comprenant deux objets, l'objet le plus chaud a une température plus élevée et donc, une énergie cinétique moyenne plus importante.
Après avoir défini ce qu'est la température, il nous faut un moyen de la mesurer. Et pour comparer les températures de différents objets, il faut une échelle. Une échelle de température est définie par deux points fixes à des températures spécifiques, avec un certain nombre de graduations entre eux.
Il existe trois principales échelles de température utilisées dans le monde aujourd'hui :
Celsius
Fahrenheit
Kelvin (température absolue)
Le point triple de l'eau (ou d'autres substances) est la température et la pression auxquelles les trois phases de la matière (solide, liquide et gaz) peuvent coexister. Les différentes phases sont alors en équilibre thermique, sans transfert de chaleur entre elles. Pour l'eau pure, le point triple est de 0,01° C et 611,2 Pa.
Le volume d'un objet définit l'espace tridimensionnel qu'il occupe. Pour mieux comprendre cela, commençons par imaginer l'espace que prend un objet dans une dimension. Il s'agit d'une longueur, ce qui est mesurable par une règle. En deux dimensions, l'espace occupé par un objet est une surface et est défini par son aire, qui nécessite la mesure de deux longueurs. Enfin, en trois dimensions, l'espace requis est donné par le volume, défini par trois mesures de longueur.
Le volume est mesuré en \(m^3\) dans le système international (SI) d'unités.
La pression d'une substance est une mesure de la quantité de force produite à la surface limite de l'objet. On l'obtient en divisant la force F (en newtons) par la surface A (en mètres carrés) sur laquelle elle agit.
La pression est mesurée en pascals (Pa) dans le SI, ce qui correspond à des \(N/m^2\).
Nous pouvons décrire les propriétés macroscopiques, telles que la masse, la température et la pression des gaz, assez facilement. Cependant, pour comprendre pleinement le comportement des gaz, nous devons également savoir ce qui se passe à l'échelle des atomes et des molécules.
Pour ce faire, la théorie cinétique des gaz a été inventée. Elle nécessite de faire plusieurs hypothèses simplificatrices afin qu'un gaz ait le comportement décrit par la loi des gaz parfaits :
Un gaz parfait est une substance théorique où les molécules qui la composent occupent un espace négligeable et n'interagissent pas entre elles, sauf éventuellement lors de collisions très brèves. Ce modèle est valable lorsque la pression du gaz est suffisamment faible. Le gaz obéit alors à la loi des gaz parfaits.
Écrivons la loi des gaz parfaits, qui est une équation d'état reliant la température, le volume et la pression : \[PV=nRT\]
Ici :
La loi des gaz parfaits fournit une bonne approximation du comportement des gaz à des températures et des pressions non extrêmes.
Maintenant que nous savons ce qu'est la température, nous pouvons étudier comment l'énergie thermique (ou chaleur) est échangée entre les objets d'un système. Ce domaine de la physique, appelé thermodynamique, traite des relations entre la chaleur, le travail, la température et l'énergie dans les systèmes.
Alors que la température décrit un état d'une substance, à savoir si elle est plus ou moins chaude ou froide, la chaleur, quant à elle, mesure un transfert d'énergie. Bien sûr, si une substance reçoit de la chaleur, alors sa température aura tendance à augmenter. Et inversement, si la substance cède de la chaleur, sa température diminue. Mais ces deux quantités s'expriment avec des unités différentes. On a déjà vu qu'on peut mesurer la température en Kelvins (K) alors que la chaleur est un transfert d'énergie et se mesure donc en Joules (J) comme l'énergie cinétique.
Dans la thermodynamique, nous utilisons souvent ce que l'on appelle une identité thermodynamique pour relier différentes grandeurs thermodynamiques, comme celles que tu as appris là-dessus !
Lorsque des substances ayant différentes températures sont en contact, un transfert de chaleur a naturellement lieu entre ces substances jusqu'à ce qu'elles atteignent la même température, c'est-à-dire l'équilibre thermique. Ce transfert de chaleur s'effectue par trois mécanismes principaux : la conduction, la convection et le rayonnement.
La conduction est un mécanisme de transfert de chaleur où l'énergie thermique se déplace d'une région à haute température vers une région à plus basse température par transfert de l'énergie cinétique de proche en proche entre les atomes voisins, sans transfert de matière.
La conduction vient du fait que les vibrations des atomes ayant beaucoup d'agitation thermique provoquent des collisions avec les atomes voisins, ce qui transmet progressivement l'énergie cinétique aux atomes avec moins d'énergie.
Différents matériaux transmettent la chaleur à des vitesses différentes. Les métaux sont généralement de bons conducteurs, tandis que les matériaux tels que les plastiques ou les gaz sont généralement de mauvais conducteurs.
La convection est le transfert d'énergie thermique dû au mouvement physique d'une substance lors de l'écoulement d'un fluide (liquide ou gaz) d'une zone de haute température vers une zone de basse température.
La convection permet un transfert d'énergie thermique grâce au déplacement de matière d'une substance plus chaude. Typiquement, cela est souvent dû à une différence de densité entre les substances les plus chaudes et les plus froides (pensez à la façon dont l'air chaud monte).
Le rayonnement est une méthode de transfert de chaleur où l'énergie est transportée d'un objet à haute énergie thermique par un rayonnement infrarouge. Cette énergie thermique peut être absorbée par un autre objet que le rayonnement infrarouge atteint.
Le rayonnement infrarouge est un type de rayonnement électromagnétique qui peut voyager dans le vide de l'espace sans avoir besoin de matière physique. C'est très utile, car cela permet à l'énergie du soleil de nous atteindre depuis des millions de kilomètres.
Figure 3. Le rayonnement te permet de ressentir la chaleur de ce feu lorsque tu te tiens à côté de lui. La convection fait monter l'air chaud chauffé par le feu, ce que tu sentirais si tu mettais ta main au-dessus du feu. Si tu décides de toucher l'une des bûches incandescentes, la conduction transfererait rapidement l'énergie thermique de la bûches à ta peau et tu brulerais. Wikimedia Commons.
Plusieurs des principes clés de la thermodynamique sont définis comme des "lois de la thermodynamique". Dans ce qui suit, nous n'allons pas entrer dans les détails de ces lois, mais nous nous contenterons de les énoncer.
Deux corps à températures différentes, mis en contact thermique, atteindront l'équilibre thermique après un certain temps.
La variation de l'énergie interne d'un système est égale à la somme de la chaleur et du travail mécanique échangés avec l'extérieur.
Le transfert de chaleur d'un milieu froid vers un milieu chaud ne peut pas se faire de manière spontanée.
Au zéro absolu de température, l'entropie d'un système thermodynamique est nulle.
La première et la plus importante application de la thermodynamique s'avère les machines thermiques qui fonctionnent par l'intermédiaire du transfert de chaleur entre deux ou plusieurs sources de chaleur. Les machines thermiques se divisent en plusieurs catégories, chacune ayant son utilité. Parmi ces machines, citons :
Notes que la thermodynamique a été le déclencheur de la révolution industrielle du XVIIIᵉ siècle qui a introduit les machines et les moteurs pour la première fois dans l'histoire et qui a facilité catégoriquement le travail, qui était trop dur auparavant !
Probablement, cela nous incite à se rappeler d'apprécier les efforts de la science pour le développement continu de l'humanité !
Il y a quatre principes ou lois de la thermodynamique, souvent numérotés de zéro à trois. On a le :
La thermodynamique vise à étudier les échanges thermiques entre les systèmes et à comprendre l'évolution d'un système thermodynamique avec le temps : sa température, son entropie, son énergie interne, etc.
La thermodynamique est une branche de la physique principalement développée au XIXᵉ siècle, bien qu'elle ait des origines qui datent de l'Antiquité. On peut néanmoins citer Sadi Carnot, qui étudia en premier les moteurs à vapeurs, et peut être considéré comme le père fondateur de la thermodynamique moderne. D'autres thermodynamiciens reconnus ont fait d'importantes contributions. Citons Lord Kelvin, Rudolf Clausius et Joseph Black.
Un système thermodynamique représente un ou plusieurs corps pris comme objets d'étude thermodynamique, isolés de ce que les entoure.
des utilisateurs ne réussissent pas le test de Thermodynamique ! Réussirez-vous le test ?
lancer le quizHow would you like to learn this content?
How would you like to learn this content?
Free physique-chimie cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Inscris-toi gratuitement et commence à réviser !
Sauvegarde des cours dans ton espace personnalisé pour y accéder à tout moment, n'importe où !
S'inscrire avec un e-mail S'inscrire avec AppleEn t'inscrivant, tu acceptes les Conditions générales et la Politique de confidentialité de StudySmarter.
As-tu déjà un compte ? Se connecter