Angle de phase

Sais-tu qu'il peut y avoir deux ondes exactes, dont la seule différence est que l'une d'entre elles a été décalée par rapport à un certain point de référence ? Une onde est un processus spatial et temporel dans lequel l'énergie est transportée. Une onde périodique est une onde qui se répète en fonction de la position et du temps. Mathématiquement, les ondes périodiques sont utilisées pour décrire les oscillations et le mouvement harmonique simple, qui décrit le mouvement des systèmes de masse-ressort. Ce type d'onde est décrit par deux caractéristiques : une magnitude et une phase. Dans cet article, nous allons aborder le concept de l'angle de phase dans une onde périodique.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel type de fonctions est utilisé pour décrire les systèmes oscillants tels que les systèmes à masse-ressort ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'angle de phase est la composante angulaire d'une onde périodique, telle qu'elle est définie comme l'argument de la fonction sinusoïdale:

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

En choisissant \(\phi_0\), nous spécifions l'objet oscillant ___ pour être sûrs d'avoir la bonne équation avec la position de l'oscillateur, quel que soit l'endroit où il se trouvait à \(t=0\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour trouver la phase initiale, nous devons utiliser l'équation suivante :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les expressions suivantes donnent les mêmes résultats :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une phase initiale négative déplacera la fonction horizontalement vers le ___, tandis qu'une phase initiale positive déplacera la fonction horizontalement vers le ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Considère la fonction \(f(x)=\sin\à gauche(x-\frac\pi4\à droite)\). La fonction sinus s'est déplacée horizontalement vers le ___ d'une valeur de \(\frac\pi4\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'angle de phase est la composante ___ d'une onde périodique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'angle de phase ne fait pas partie de la solution des équations différentielles qui décrivent le mouvement oscillatoire pour les systèmes de masse-ressort.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la phase initiale si la position et l'amplitude initiales de l'objet sont égales à \(1\;\mathrm m\) ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Considère la fonction \(x=3\sin\à gauche(\pi t+\frac\pi2\à droite)\). Quelle est la position de l'objet à \(t=0\) ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel type de fonctions est utilisé pour décrire les systèmes oscillants tels que les systèmes à masse-ressort ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'angle de phase est la composante angulaire d'une onde périodique, telle qu'elle est définie comme l'argument de la fonction sinusoïdale:

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

En choisissant \(\phi_0\), nous spécifions l'objet oscillant ___ pour être sûrs d'avoir la bonne équation avec la position de l'oscillateur, quel que soit l'endroit où il se trouvait à \(t=0\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Pour trouver la phase initiale, nous devons utiliser l'équation suivante :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Les expressions suivantes donnent les mêmes résultats :

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une phase initiale négative déplacera la fonction horizontalement vers le ___, tandis qu'une phase initiale positive déplacera la fonction horizontalement vers le ___.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Considère la fonction \(f(x)=\sin\à gauche(x-\frac\pi4\à droite)\). La fonction sinus s'est déplacée horizontalement vers le ___ d'une valeur de \(\frac\pi4\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'angle de phase est la composante ___ d'une onde périodique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'angle de phase ne fait pas partie de la solution des équations différentielles qui décrivent le mouvement oscillatoire pour les systèmes de masse-ressort.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la phase initiale si la position et l'amplitude initiales de l'objet sont égales à \(1\;\mathrm m\) ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Considère la fonction \(x=3\sin\à gauche(\pi t+\frac\pi2\à droite)\). Quelle est la position de l'objet à \(t=0\) ?

Afficer la réponse

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Angle de phase

  • Temps de lecture: 7 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Angle de phase

    Dans les articles précédents, nous avons discuté de l'équation différentielle qui décrit le mouvement oscillatoire, en particulier le mouvement harmonique simple. Nous savons que la solution qui satisfait l'équation s'exprime comme suit

    $$x=A\sin\gauche(\omega t+\phi_0\droite).$$

    Où \(A\) est l'amplitude en mètres \((\mathrm m)\), \(\omega\) est la fréquence angulaire en radians par seconde \((\frac{\mathrm{rad}}{\mathrm s})\), et \(\phi_0\) est la phase initiale en radians \((\mathrm{rad})\).

    L'angle de phase est la composante angulaire d'une onde périodique, telle qu'elle est définie comme l'argument de la fonction sinusoïdale, \(\oméga t+\phi_0\). En choisissant \(\phi_0\), nous spécifions la position initiale de l'objet oscillant pour être sûrs d'avoir la bonne équation avec la position de l'oscillateur, quel que soit l'endroit où il se trouvait à \(t=0\). Nous pouvons reformuler l'équation ci-dessus en termes de symbole \(\phi\) pour l'angle de phase.

    $$\begin{align*}\phi&=\omega t+\phi_0,\\x&=A\sin\left(\phi\right).\end{align*}$$

    Pour déterminer la phase initiale, nous utilisons la formule suivante :

    $$\phi_0=\sin^{-1}\left(\frac{x_0}A\right),$$

    où \( A\) est l'amplitude en mètres \((\mathrm m)\) et \(x_0\) est la position initiale de l'objet à \(t=0\) en mètres \ ((\mathrm m)\).

    Un oscillateur harmonique simple a une amplitude de \(3.0\;\mathrm{cm}\) et une fréquence de \ (4.0\;\mathrm{Hz}\). Au moment \N(t=0\N), sa position est \N(y=3,0\N;\Nmathrm{cm}\N). Où est-elle au moment \N(t=0,3\N;\Nmathrm s\N) ?

    L'amplitude est de \(A=0,03\;\mathrm m\) et la fréquence angulaire est de \(\omega=2\pi f=2\pi(4,0\;\mathrm{Hz})=8\pi\;{\textstyle\frac{\mathrm{rad}}{\mathrm s}}\). Nous pouvons maintenant déterminer la phase initiale,

    \begin{align*}\phi_0&=\sin^{-1}\left(\frac{y_0}A\right),\\\phi_0&=\sin^{-1}\left(\frac{0.03\;\mathrm m}{0.03\;\mathrm m}\right),\\\phi_0&=\frac\pi2.\end{align*}

    Nous connaissons maintenant la position de l'oscillateur à tout moment,

    $$y(t)=0.03\sin\left(8\pi t+\frac\pi2\right).$$

    Nous pouvons trouver la position de l'oscillateur à l'instant \N (t=0,3\N;\Nmathrm s\N),

    \begin{align*}y(0.3\;\mathrm s)&=(0.03\;\mathrm m)\sin\left((8\pi\;{\textstyle\frac{\mathrm{rad}}{\mathrm s}})(0.3\;\mathrm s)\;+\;\frac\pi2\;\mathrm{rad}\right),\\y(0.3\;\mathrm s)&=0.0093\;m.\end{align*}

    La position d'un oscillateur est donnée par l'équation :

    $$y=(0.04\;\mathrm m)\sin\left((6\pi\;{\textstyle\frac{\mathrm{rad}}{\mathrm s})t-\frac\pi2;\mathrm{rad}\\N{\rmathrm s})\Ndroit).$$

    Où se trouve l'oscillateur à l'instant \(t=0\) ?

    \begin{align*}y(0\;\mathrm s)&=(0.04\;\mathrm m)\sin\left((6\pi\;{\textstyle\frac{\mathrm{rad}}{\mathrm s}})(0\;\mathrm s)-\frac\pi2\;\mathrm{rad}\;\right),\\y(0\;\mathrm s)&=-0.04\;\mathrm m.\end{align*}

    La phase initiale déterminera si une fonction sinus ou cosinus est utilisée pour décrire la position de l'objet oscillant. Par exemple, si \(\phi_0=\frac\pi2\) nous pouvons utiliser une fonction cosinus au lieu d'une fonction sinus pour la phase initiale. Ceci est dû à l'identité trigonométrique, \sin\left(\frac\pi2+\theta\right)=\cos\left(\theta\right)\). Le tableau ci-dessous explique comment les deux expressions donnent les mêmes résultats à tout moment.

    Equation\(t=0\)\(t=\frac\pi{2\omega}\)
    \(\sin\left(\omega t+\;\frac\pi2\right)\)10
    \N- (\Ncos\Nà gauche(\Noméga t\Nà droite)\N)10

    Pour l'anecdote, l'angle de phase joue un rôle très important en physique expérimentale, notamment en électronique où il existe une relation directe entre la tension et les fonctions sinusoïdales. En électronique, l'angle de phase désigne le déplacement angulaire entre les formes d'onde de la tension et du courant dans un circuit de courant alternatif.

    Comprendre la phase initiale d'un graphique

    Nous avons abordé la définition théorique de l'angle de phase et de la phase initiale. Comment comprendre l'impact de la modification de la phase initiale d'une fonction sinusoïdale ? Il est plus facile de comprendre si nous représentons réellement les fonctions sinusoïdales dans un graphique.

    Exemples d'angles de phase avec différentes phases initiales StudySmarterFig. 1 - Différents exemples de phases initiales pour visualiser l'impact de l'ajustement de la phase initiale d'une fonction sinusoïdale.

    D'après l'image ci-dessus, nous voyons qu'à la valeur initiale \(x=0\), \(f(0)=\sin\à gauche(0\à droite)=0\). Pour la même fonction sinusoïdale avec une phase initiale \(\phi_0=\frac{-\pi}4\), \(f(0)=\sin\left(0-\frac\pi4\right)=-\frac{\sqrt2}2\) et \(f(\frac\pi4)=\sin\left(\frac\pi4-\frac\pi4\right)=0\). Nous remarquons que la fonction sinus s'est déplacée horizontalement vers la droite d'une valeur de \(\frac\pi4\). Si nous changeons la phase initiale en \N(\Nphi_0=-\Npi\N), nous remarquons que la fonction sinusoïdale se déplace vers la droite d'une valeur de \N(\Npi\N). Nous remarquons ici un schéma : une phase initiale négative décale la fonction horizontalement vers la droite, tandis qu'une phase initiale positive la décale horizontalement vers la gauche. Ce phénomène est représenté visuellement dans la figure ci-dessous.

    Angle de phase Cas où la phase initiale est nulle StudySmarterFig. 2 - Fonction sinusoïdale : cas où la phase initiale est nulle.

    Angle de phase Effet d'une phase initiale positive StudySmarterFig. 3 - Effet d'une phase initiale positive sur une fonction sinusoïdale.

    Angle de phase Effet d'une phase initiale négative StudySmarterFig. 4 - Effet d'une phase initiale négative sur une fonction sinusoïdale.

    Angle de phase - Principaux enseignements

    • La solution de l'équation différentielle qui décrit le mouvement oscillatoire, en particulier le mouvement harmonique simple, est : \(x=A\sin\à gauche(\oméga t+\phi_0\à droite)\).
    • L'angle de phase est la composante angulaire d'une onde périodique, telle qu'elle est définie comme l'argument de la fonction sinusoïdale, \(\omega t+\phi_0\).
    • Nous utilisons la phase initiale pour spécifier laposition initiale del'objet oscillant pour nous assurer que nous avons la bonne équation avec la position de l'oscillateur, quel que soit l'endroit où il se trouvait à \(t=0\), \(\phi_0=\sin^{-1}\left(\frac{x_0}A\right)\).
    • Une phase initiale négative déplace la fonction horizontalement vers la droite, tandis qu'une phase initiale positive la déplace horizontalement vers la gauche.

    Références

    1. Fig. 1 - Différents exemples de phases initiales pour visualiser l'impact de l'ajustement de la phase initiale d'une fonction sinusoïdale, StudySmarter Originals.
    2. Fig. 2 - Fonction sinusoïdale : cas où la phase initiale est nulle, StudySmarter Originals
    3. Fig. 3 - Effet d'une phase initiale positive sur une fonction sinusoïdale, StudySmarter Originals
    4. Fig. 4 - Effet d'une phase initiale négative sur une fonction sinusoïdale, StudySmarter Originals
    Questions fréquemment posées en Angle de phase
    Qu'est-ce que l'angle de phase en physique ?
    L'angle de phase est une mesure de décalage entre deux ondes sinusoïdales. Il s'exprime en degrés ou en radians.
    Comment mesure-t-on l'angle de phase ?
    On mesure l'angle de phase en comparant la différence de temps entre deux ondes sinusoïdales, puis en la convertissant en degrés ou radians.
    Pourquoi l'angle de phase est-il important ?
    L'angle de phase est crucial pour analyser et comprendre les interactions entre différentes ondes, notamment en électricité et en acoustique.
    Quelle est la différence entre l'angle de phase et le déphasage ?
    L'angle de phase est une valeur spécifique à un moment donné, tandis que le déphasage décrit le décalage constant entre deux ondes sur une période complète.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Quel type de fonctions est utilisé pour décrire les systèmes oscillants tels que les systèmes à masse-ressort ?

    L'angle de phase est la composante angulaire d'une onde périodique, telle qu'elle est définie comme l'argument de la fonction sinusoïdale:

    En choisissant \(\phi_0\), nous spécifions l'objet oscillant ___ pour être sûrs d'avoir la bonne équation avec la position de l'oscillateur, quel que soit l'endroit où il se trouvait à \(t=0\).

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 7 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !