Le modèle du gaz parfait

Les gaz sont constitués de nombreuses molécules qui se déplacent rapidement et interagissent à la fois entre elles et avec divers obstacles, comme les parois de leur contenant. Si l'on essayait d'expliquer leur comportement en tenant compte de toutes ces interactions, les calculs seraient longs et fastidieux en raison d'équations compliquées, même dans les cas les plus primitifs. C'est là qu'intervient le modèle du gaz idéal. En physique, nous créons des systèmes hypothétiques qui obéissent à toutes les lois appliquées et sont supposés être aussi idéaux afin que nous, scientifiques et ingénieurs, puissions vérifier l'hypothèse et agir en conséquence. Un gaz idéal obéit à toutes les lois sur les gaz qui sont reconnues par les scientifiques du monde entier pour se rapprocher du comportement d'un gaz réel. Dans cet article, nous allons examiner le comportement des gaz idéaux et les différentes lois qui régissent leur comportement.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie les relations pression-volume ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie les relations température-volume ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie les relations entre la pression et la température ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie la relation volume-montant ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un récipient d'une capacité de \(350\) \(\mathrm{mL}\) contient une certaine quantité de gaz à \(26\) \(\mathrm{ ^{\circ}C}\) et \(3,3\) \(\mathrm{bar}\) de pression. Le gaz est transféré dans un autre récipient de volume \(200\) \(\mathrm{mL}\). Quelle est la pression dans ce nouveau récipient ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un échantillon de chlore a un volume de \(720 \, \mathrm{mL}\) à \(150 \, \mathrm{ ^{\circ}C}\). Calcule la température à laquelle le volume deviendra \N(450 \N, \Nmathrm{mL}\N). Suppose que la pression est constante.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel ensemble d'équations représente correctement la loi de Gay Lussac.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle série d'équations représente correctement la loi d'Avogadro?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la valeur correcte de \(\mathrm{N_A}\) ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un gaz à une température de \(523\) \(\mathrm{K}\) et à une pression de \(1,8\) \ (\mathrm{bar}\) est autorisé à refroidir à \ (313\)\ (\mathrm{K}\), quelle sera la pression finale du gaz à \ (313\) \( \mathrm{K}\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation mathématique de la loi des gaz idéaux ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie les relations pression-volume ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie les relations température-volume ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie les relations entre la pression et la température ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Nomme la loi qui étudie la relation volume-montant ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un récipient d'une capacité de \(350\) \(\mathrm{mL}\) contient une certaine quantité de gaz à \(26\) \(\mathrm{ ^{\circ}C}\) et \(3,3\) \(\mathrm{bar}\) de pression. Le gaz est transféré dans un autre récipient de volume \(200\) \(\mathrm{mL}\). Quelle est la pression dans ce nouveau récipient ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un échantillon de chlore a un volume de \(720 \, \mathrm{mL}\) à \(150 \, \mathrm{ ^{\circ}C}\). Calcule la température à laquelle le volume deviendra \N(450 \N, \Nmathrm{mL}\N). Suppose que la pression est constante.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quel ensemble d'équations représente correctement la loi de Gay Lussac.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle série d'équations représente correctement la loi d'Avogadro?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la valeur correcte de \(\mathrm{N_A}\) ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Un gaz à une température de \(523\) \(\mathrm{K}\) et à une pression de \(1,8\) \ (\mathrm{bar}\) est autorisé à refroidir à \ (313\)\ (\mathrm{K}\), quelle sera la pression finale du gaz à \ (313\) \( \mathrm{K}\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'équation mathématique de la loi des gaz idéaux ?

Afficer la réponse

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Le modèle du gaz parfait

  • Temps de lecture: 17 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    Comment décrire un gaz ?

    Au total, il existe quatre états fondamentaux de la matière, le gaz est l'un d'entre eux. Pour comprendre le modèle des gaz idéaux, il faut d'abord définir ce qu'est exactement un gaz.

    Legaz est un ensemble de molécules (ou d'atomes) en mouvement aléatoire continu, dont la vitesse moyenne augmente avec la température.

    Un gaz diffère d'un liquide en ce sens que, sauf en cas de collision, les molécules d'un gaz sont largement séparées et se déplacent sur des trajectoires qui ne sont pas affectées par les forces intermoléculaires. L'air, l'oxygène et la vapeur d'eau sont des exemples quotidiens de gaz.

    Les trois autres états fondamentaux de la matière sont le solide, le liquide et le plasma !

    Signification du modèle des gaz idéaux

    Le modèle des gaz idéaux nous permet de comprendre le comportement des gaz. Même si aucun gaz n'est idéal dans le monde réel, la simplification du concept permet d'obtenir de bonnes approximations du comportement des gaz réels dans la plupart des conditions. L'étude du comportement des gaz a permis de faire certaines généralisations. Ces généralisations sont appelées lois des gaz. Ces lois sur les gaz donnent des relations quantitatives entre deux variables quelconques lorsque les deux autres sont maintenues constantes. Discutons des différentes lois sur les gaz en détail.

    Hypothèses du modèle des gaz idéaux

    Si l'on considère que le modèle des gaz idéaux se réfère à un système hypothétique, certaines hypothèses doivent être respectées pour assurer la cohérence. Les quatre principales hypothèses sont :

    • Un gaz idéal est composé de nombreuses molécules identiques en forme de points, réparties vraiment très loin les unes des autres, de sorte que les forces intermoléculaires sont négligeables ;

    • Les molécules de gaz idéal subissent des mouvements aléatoires et obéissent aux lois du mouvement de Newton ;

    • Les molécules de gaz idéal subissent des collisions élastiques avec les parois du récipient dans lequel elles se trouvent ;

    • Les molécules de gaz idéal ne subissent que des collisions complètement élastiques entre elles.

    La première loi du modèle des gaz idéaux

    La première loi du modèle des gaz idéaux a été définie par le physicien anglo-irlandais Robert Boyle. Boyle a étudié la relation entre la pression et le volume d'une masse donnée d'un gaz à une température constante. Cette relation est connue sous le nom de Loi de Boyle.

    Laloi de Boyle stipule qu'à température constante, le volume d'une quantité fixe d'un gaz est inversement proportionnel à sa pression.

    Mathématiquement, la loi de Boyle peut être exprimée comme suit,

    $$ V \propto \frac{1}{p}}$$$

    où \(V\) est le volume, et \(p\) est la pression. Nous pouvons maintenant insérer une constante de proportionnalité pour en faire une équation. Appelons cette constante de proportionnalité \(k\). Note que \(k\) dépend de la quantité de gaz et de la température. La nouvelle expression devient

    $$ V = \frac{k}{p} $$

    ou peut être réarrangée comme suit

    $$p \, V = k$$$

    Cela signifie que le produit de la pression et du volume d'une quantité fixe de gaz à une température constante est constant. Un exemple de ce comportement des gaz est visible dans la figure ci-dessous.

    Le modèle du gaz idéal Un récipient contient un gaz qui est comprimé par l'application d'un poids. À mesure que le volume diminue, la pression augmente. Cette relation est représentée sur un graphique affichant une ligne inversement proportionnelle StudySmarter Fig 1 - Un exemple pratique de la loi de Boyle. Au fur et à mesure que le volume du gaz dans le récipient diminue, la pression augmente, ce qui prouve la proportionnalité inverse des deux variables.

    Soit \(V_1\) le volume d'une quantité donnée de gaz à la pression \(p_1\) et à une température donnée \(T\). Lorsque la pression passe à \(p_2\) à la même température, le volume passe à \(V_2\). Selon la loi de Boyle,

    $$p_1 \, V_1 = k. $$$

    Remarque que nous n'avons pas changé la quantité de gaz ou la température, donc notre constante de proportionnalité reste la même, donc

    $$p_2 \, V_2 = k. $$

    En combinant ces deux résultats, on obtient

    $$p_1 \, V_1 =k= p_2 \, V_2$$$.

    ou

    $$p_1 \, V_1 = p_2 \, V_2.$$

    Cette dernière équation est une reformulation un peu plus utile de la loi de Boyle.

    Un récipient d'un volume de \(120 \N, \Nmathrm{mL}\N) contient du gaz à \N(35 \N, \Nmathrm{ ^\Ncirc C}\N) et \N(1,2 \N, \Nmathrm{bar}\N) de pression. Le gaz est transféré dans un autre récipient de volume \(180 \N, \Nmathrm{mL}\N) à \N(35 \Nmathrm{ ^\Ncirc C}\N) et se dilate pour remplir complètement le récipient. Quelle est sa pression dans ce nouveau récipient ?

    Ce problème est basé sur l'équation de la loi de Boyle !

    Solution

    Comme la température et la quantité de gaz restent constantes, nous pouvons appliquer la loi de Boyle. Soit \(p_1 = 1,2 \, \mathrm{bar}\), \(V_1=120 \, \mathrm{mL}\), et \(V_1=180 \, \mathrm{mL}\), alors :

    $$p_1 \, V_1 = p_2 \, V_2$$.

    $$ 1.2 \N- \N- \N- \N- \N- \NMathrm{bar} \cdot 120 \c, \mathrm{mL} = p_2 \cdot 180 \c, \mathrm{mL} $$.

    $$ p_2 = \frac{1.2 \N, \Nmathrm{bar} \cdot 120 \cathrm{\cancel{mL}}{180 \cathrm{\cancel{mL}}}$$.

    $$ p_2 = 0.8 \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- $$$

    Nous avons utilisé le \(\mathrm{bar}\) comme unité de pression, qui est liée à l'unité de pression SI Pascal \((\mathrm{Pa})\) comme \(1\;\mathrm{bar}=100\;000\ ; \mathrm{Pa}\).

    Le modèle des gaz idéaux Deuxième loi

    La deuxième loi du modèle du gaz idéal est la loi de Charles. Charles a étudié l'effet de la température sur le volume des gaz à pression constante. Il a observé la généralisation suivante sur la relation entre le volume et la température du gaz, connue sous le nom de loi de Charles.

    Laloi de Charles stipule qu'à pression constante, le volume d'une masse donnée d'un gaz est directement proportionnel à la température absolue.

    Loi de Charles en degrés Kelvin

    En 1848, un scientifique britannique, Lord Kelvin, a proposé une nouvelle échelle de température connue sous le nom d'échelle absolue de température. Elle commence au zéro absolu, \(0^\circircmathrm{K}\), où les particules ont une énergie cinétique nulle. L'incrément est le même que pour l'échelle Celsius, donc \(1^ircc\mathrm{K}=1^ircc\mathrm{C}.\NLa température Kelvin est également appelée l'échelle thermodynamique de la température et est utilisée dans toutes les mesures scientifiques. Cela a permis de simplifier la relation entre la température et le volume gazeux.

    Le zéro absolu, ou \(0^\circircmathrm{K} \), est équivalent à \(-273,15^\circmathrm{K} \circmathrm{K}). Par conséquent, pour convertir une température en degrés Celcius, \(T_\mathrm{C}\) en degrés Kelvin \(T_\mathrm{K}\), nous pouvons utiliser la formule :

    $$T_K=T_C+273.15$$.

    La loi de Charles peut être exprimée en degrés Kelvin. Supposons que

    $$T_0=0^\circ\mathrm{C}=273.15^\circ\mathrm{K}$$

    où \(T_0\) est la température initiale, et donc \(V_0\) est le volume initial d'un gaz donné à cette température initiale. D'après la définition de la loi de Charles, si la température augmente de \(1 \, ^\circ\mathrm{K} \), le volume augmentera proportionnellement de :

    $$ V_0 \cdot \frac{1}{T_0}$$.

    Par conséquent, si la température augmente de \(t\), le volume augmentera de

    $$ \Delta V = V_0 \cdot \frac{1}{T_0} \cdot t.$$

    Disons que \(V_\mathrm{T}\) est le volume à n'importe quelle température \(T\), et \(t\) est la différence entre la température initiale \(T_0\) et la température finale \(T\), donc :

    $$t=T-T_0$$.

    Le volume final \(V_\mathrm{T}\) est la somme du volume initial et de l'augmentation de volume, on obtient donc :

    $$V_\mathrm{T} = V_0 + \frac{V_0 \cdot t}{T_0} = V_0 \left [ 1+\frac{t}{T_0} \right ] $$.

    où le terme entre crochets peut être développé et exprimé en degrés Kelvin

    $$ \left [ 1+\frac{t}{T_0} \right ] = \frac{T_0 + t}{T_0}=\frac{T_0 + (T-T_0)}{T_0}= \frac{T}{T_0} $$

    Les volumes et les températures peuvent maintenant être combinés dans l'expression suivante

    $$V_\mathrm{T}=\frac{V_0 \, T}{T_0}$$$

    $$ \frac{V_\mathrm{T}}{V_0} = \frac{T}{T_0}$$$

    $$\frac{V_\mathrm{T}}{T} = \frac{V_0}{T_0}$$.

    Ainsi ,

    $$\frac{V}{T} = \mathrm{constante} = k_2$$

    où \(k_2\) est une constante qui dépend de la pression et de la masse du gaz, ainsi que des unités de volume. L'expression ci-dessus peut être réécrite comme suit

    $$ V = k_2 \, T $$$

    $$ V \propto T $$

    et est visualisée dans la figure ci-dessous.

    Le modèle du gaz idéal Un récipient contenant du gaz est maintenu à une pression constante et est chauffé. À mesure que le gaz se réchauffe, son volume augmente. Cette relation est affichée sur un graphique température-volume sous la forme d'une ligne droite indiquant une proportionnalité directe StudySmarterFig 2 - Un exemple pratique de la loi de Charles. Lorsque la température du gaz dans le récipient augmente, le volume augmente également, ce qui prouve la proportionnalité directe, Wikimedia Commons.

    La loi de Charles peut également être exprimée comme le volume d'une masse fixe d'un gaz étant directement proportionnel à la température absolue, tandis que la pression reste constante . La formule de travail de la loi de Charles est la suivante :

    $$ \frac{V_1}{T_1} = \frac{V_2}{T_2} = \mathrm{constante}. $$

    Un échantillon d'hélium a un volume de \(520 \N, \Nmathrm{mL}\N) à \N(100 \Nmathrm{ ^\Ncirc C}\N). Calcule la température à laquelle le volume deviendra \(260 \N, \Nmathrm{mL}\N). Suppose que la pression est constante.

    Ce problème est basé sur la loi de Charles et l'application de la formule de la loi de Charles !

    Solution

    Les valeurs qui nous sont données

    $$V_1 = 520 \, \mathrm{mL}, V_2= 260 \, \mathrm{mL},$$$.

    $$T_1 = 100 + 273 = 373 \N, \Nmathrm{K},$$

    nous devons trouver la valeur de \(T_2\).

    La pression reste donc constante, en appliquant la loi de Charle :

    $$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$.

    $$T_2 = \frac{V_2 \, T_1}{V_1}$$$

    $$T_2 = \frac{260 \, \mathrm{\cancel{mL}} \cdot 373 \c, \mathrm{K}}{520 \c, \mathrm{\cancel{mL}}$$$.

    $$ T_2 = 186.5 \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- $$$

    En degrés centigrades, c'est

    $$ t = 186,5 -273,15 = -86,65 \mathrm{ ^\circ C}.$$

    Le modèle des gaz idéaux Troisième loi

    La troisième loi du modèle des gaz idéaux est la loi de Gay-Lussac. Elle définit la relation entre la pression et la température et a été découverte par Joseph Gay-Lussac.

    À volume constant, la pression d'une quantité fixe de gaz varie directement avec la température, c'est ce qu'on appelle la loi de Gay-Lussac.

    Mathématiquement, elle peut être exprimée comme suit ,

    $$p \propto T $$

    où la pression \(p\) est directement proportionnelle à la température \(T\). À partir des conditions de proportionnalité, nous pouvons arriver à la conclusion que,

    $$ \frac{p}{T} = \mathrm{constante} = k_3 $$

    $$ \frac{p_1}{T_1} = \frac{p_2}{T_2}. $$

    L'équation ci-dessus a été obtenue en combinant la loi de Boyle et la loi de Charles.

    Quatrième loi du modèle des gaz idéaux

    La quatrième loi du modèle des gaz idéaux est la loi d'Avogadro. Amadeo Avogadro a étudié la relation entre le volume d'un gaz et le nombre de molécules à température et pression constantes. Cette relation a été acceptée comme une loi et est connue sous le nom de loi d'Avogadro.

    Des volumes égaux de tous les gaz dans les mêmes conditions de température et de pression contiennent un nombre égal de molécules - c'est ce qu'on appelle la loi d'Avogadro.

    Cela implique que tant que la température et la pression restent constantes, le volume du gaz dépend du nombre de molécules du gaz.

    Mathématiquement, la loi d'Avogadro peut être exprimée comme suit, où \((V)\) représente le volume et \((n)\) le nombre de moles.

    $$V \propto n. $$

    En d'autres termes, le volume est directement proportionnel au nombre de moles alors que la température et la pression restent constantes, ce qui implique :

    $$V = k_4 \cdot n$$.

    $$\frac{V_1}{n_1} = \frac{V_2}{n_2} = \mathrm{constante} = k_4.$$

    A partir de cette expression, on obtient l'équation finale

    $$ \frac{V_1}{n_1} = \frac{V_2}{n_2} $$

    Le nombre de molécules dans une mole de gaz a été déterminé comme étant \(6,022 \cdot 10^{23}\) et est connu sous le nom de constante d'Avogadro \(N_\mathrm{A}\).

    La loi des gaz idéaux

    Toutes les lois mentionnées ci-dessus peuvent être combinées sous la forme d'une loi singulière. Les propriétés macroscopiques d'un gaz idéal sont liées par la loi des gaz idéaux.

    La loi des gaz idéaux est une approximation utilisée pour résoudre les problèmes impliquant la température, la pression et le volume des gaz. C'est une combinaison des lois créées par Boyle, Charles, Gay Lussac et Avogadro.

    Mathématiquement, elle peut être exprimée comme suit

    $$ pV = nRT $$

    où le volume \(V\) d'un gaz dépend du nombre de moles \(n\), de la pression \(p\) et de la température \(T\). Ici, \(R\) est la constante universelle des gaz égale à \(8,314 \, \frac{\mathrm{J}}{\mathrm{mol \cdot K}}\).

    Le modèle des gaz idéaux Thermodynamique

    La loi des gaz idéaux définit le comportement des gaz idéaux en fonction de leur pression, de leur volume et de leur température. Tu sais peut-être que la thermodynamique est l'étude de la relation entre la chaleur et les autres formes d'énergie. L'un des fondateurs de la thermodynamique, le physicien allemand Julius von Mayer, a découvert que la chaleur ajoutée à un gaz a une équivalence en travail mécanique. En d'autres termes, on peut définir une relation entre la quantité d'énergie transférée à un gaz et le changement de température correspondant en utilisant la capacité thermique spécifique du gaz.

    Selon que le gaz est maintenu à un volume constant ou que le récipient est autorisé à se dilater et que le gaz reste à une pression constante, la capacité calorifique spécifique a des valeurs différentes :

    $$C_p=\mathrm{Spécifique}\;\mathrm{chaleur}\;\mathrm{capacité}\;\mathrm{at}\;\mathrm{constant}\;\mathrm{pression}$$$.

    $$C_v=\mathrm{Spécifique}\\N;\mathrm{chaleur}\N;\mathrm{capacité}\N;\mathrm{at}\N;\mathrm{constante}\N;\mathrm{volume}$$

    La quantité d'énergie thermique transférée au gaz en joules \((\mathrm{J})\) est alors donnée par \(Q_p\) (à pression constante) ou \(Q_v\) (à volume constant).

    $$Q_p=mC_p\NDelta T$$

    Q_v=mC_v\Delta T

    Où \(m\) est la masse de gaz en \(\mathrm{kg}\) et \(\Delta T\) est le changement de température en \(^\circ \mathrm{K}.\).

    La loi des gaz idéaux peut être utilisée pour représenter le changement de température en termes de changements de pression ou de volume, ce qui est utile pour analyser les cycles thermodynamiques tels que le cycle d'Otto ou le cycle diesel.

    Les équations du modèle des gaz idéaux

    Le modèle des gaz idéaux comporte un ensemble de quatre équations principales qui sont largement utilisées pour tout type de calculs et de mesures. L'ensemble de ces équations constitue la loi des gaz idéaux. Toutes ces équations sont dérivées et expliquées ci-dessus et sont compilées ici pour en faciliter l'accès et la compréhension.

    1. Loi des gaz idéaux (pV=nRT\)
    2. Loi de Boyle (relation pression-volume) : \N(p_1 \N, V_1 = p_2 \N, V_2 \N)
    3. Loi de Charles (relation volume-température) : \(\frac{V_1}{T_1} = \frac{V_2}{T_2}\)
    4. Loi de Gay Lussac (relation pression-température) : \(\frac{p_1}{T_1} = \frac{p_2}{T_2}\)
    5. Loi d'Avogadro (relation entre le volume et la quantité) : \(\frac{V_1}{n_1} = \frac{V_2}{n_2}\)

    Le modèle des gaz idéaux Les quatre lois relatives au modèle des gaz idéaux : Boyle, Charles, Avogadro, Gay-Lussac ainsi que la loi du gaz idéal affichée ensemble StudySmarterFig 3 - Toutes les relations du modèle des gaz idéaux sont liées entre elles, car elles décrivent toutes le comportement des gaz en fonction de paramètres variables.

    Le modèle des gaz idéaux - Principaux enseignements

    • Le gaz est une phase de la matière qui n'a pas de forme, mais qui peut occuper tout l'espace dans lequel il se trouve.
    • Quatre lois principales régissent les gaz idéaux : la loi de Boyle, la loi de Charle, la loi de Gay Lussac et la loi d'Avogadro.
    • La loi de Boyle traite de la relation pression-volume.
    • La loi de Charle traite de la relation entre le volume et la température.
    • La loi deGay Lussac traite de la relation pression-température.
    • La loi d'Avogadro traite de la relation volume- quantité.
    • La loi des gaz idéaux est une combinaison des quatre lois primaires qui régissent les gaz idéaux.
    • La loi des gaz idéaux est une approximation utilisée pour résoudre les problèmes impliquant la température, la pression et le volume des gaz.

    Références

    1. Figure 1 - Boyle's law final.gif from (https://commons.wikimedia.org/wiki/File:Boyle%27s_law_final.gif) licensed by (Public Domain)
    2. Figure 2 - Loi de Charles et Gay-Lussac animée.gif de (https://commons.wikimedia.org/wiki/File:Charles_and_Gay-Lussac%27s_Law_animated.gif) sous licence (domaine public)
    3. Figure 3 - Ideal gas law relationships.svg from (https://commons.wikimedia.org/wiki/File:Ideal_gas_law_relationships.svg) licensed by CC BY_SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
    Questions fréquemment posées en Le modèle du gaz parfait
    Qu'est-ce que le modèle du gaz parfait?
    Le modèle du gaz parfait est une théorie qui décrit le comportement des gaz en supposant qu'ils sont composés de particules indépendantes en mouvement constant.
    Quelles sont les hypothèses du modèle du gaz parfait?
    Les hypothèses sont que les particules n'ont pas de volume propre et qu'il n'y a pas d'interactions entre elles sauf lors des collisions.
    Comment s'exprime l'équation d'état d'un gaz parfait?
    L'équation d'état d'un gaz parfait est: PV = nRT, où P est la pression, V le volume, n la quantité de matière, R la constante des gaz parfaits, et T la température.
    En quoi le modèle du gaz parfait est-il utile?
    Le modèle du gaz parfait est utile pour prédire le comportement des gaz dans différentes conditions de température et de pression avec une bonne approximation.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Nomme la loi qui étudie les relations pression-volume ?

    Nomme la loi qui étudie les relations température-volume ?

    Nomme la loi qui étudie les relations entre la pression et la température ?

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 17 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !