Pour étudier les orbites des satellites, nous considérons un satellite se déplaçant vers une planète influencée par une force gravitationnelle. Pour simplifier les mathématiques, nous réduisons le problème à deux corps d'un système planète-satellite à un problème à un seul corps, nous étudions l'orbite dans le cadre de référence du centre de masse.
Nous examinons l'orbite de la masse réduite \(\mu\) autour de l'origine, où la masse totale du système \(M\) est au repos,
\N- [\N- Début{align*} \mu&=\frac{m_1m_2}{m_1+m_2},\\\mu&=\frac{m_1m_2}M,\end{align*}\]
Pour dériver l'équation de l'orbite, nous devons d'abord commencer par décrire l'énergie du système de masse réduite en orbite autour du centre de masse du système. Nous connaissons l'énergie cinétique et le potentiel gravitationnel du système, nous pouvons donc exprimer l'énergie totale du système comme suit ,
$$E=\frac{1}{2}\mu v^2-\frac{Gm_1m_2}{r},$$
où \mu est la masse réduite en \(\text{kg}\) et \(v\) est la vitesse relative entre les deux corps.
La vitesse peut être définie en coordonnées polaires comme suit ,
\begin{align*}\vec{v}&=v_\text{r} \hat{r} +v_\theta \hat{\theta},\\v&=|\vec{v}|,\\v&=|\frac{\text{d}\vec{r}}{\text{d}t}|,\end{align*}
where \(v_\text{r}=\frac{\text{d}r}{\text{d}t}\) and \(v_\theta=r\left(\frac{\text{d}\theta}{\text{d}t}\right)\).
L'énergie du système est maintenant :
$$E=\frac{1}{2}\mu\left[\left(\frac{\text{d}r}{\text{d}t}\right)^2+\left(r\frac{\text{d}\theta}{\text{d}t}\right)^2\right]-\frac{Gm_1m_2}{r}.$$
Le moment angulaire du système est donné par :
$$\begin{align*}\vec{l}&=\vec{r}\times\mu\vec{v},\\\vec{l}&=r \hat{r}\times\mu\left(v_\text{r} \hat{r}+v_\theta \hat{\theta}\right),\\\vec{l}&=r\mu v_\theta \hat{k},\\\vec{l}&=\mu r^2\frac{\text{d}\theta}{\text{d}t} \hat{k},\\l&=\mu r^2\frac{\text{d}\theta}{\text{d}t},\\\frac{\text{d}\theta}{\text{d}t}&=\frac{l}{\mu r^2}.\end{align*}$$
où \(\hat{k}\) est un vecteur unitaire perpendiculaire au plan du mouvement.
Révise tes règles de calcul vectoriel si tu as eu du mal à suivre la dérivation ci-dessus.
Maintenant, nous réécrivons l'énergie totale du système,
$$E=\frac{1}{2}\mu\left(\frac{\text{d}r}{\text{d}t}\right)^2+\frac{1}{2}\frac{l^2}{\mu r^2}-\frac{Gm_1m_2}{r}.$$
Nous pouvons réarranger et écrire cette expression en termes de \(\frac{\text{d}r}{\text{d}t}\) :
$$\frac{\text{d}r}{\text{d}t}=\sqrt{\frac{2}{\mu}}\left(E-\frac{1}{2}\frac{l^2}{\mu r^2}+\frac{Gm_1m_2}{r}\right)^{\frac{1}{2}}.$$
Nous divisons maintenant \( \frac{\text{d}\theta}{\text{d}t}\) par \ (\frac{\text{d}r}{\text{d}t}\) pour obtenir \ (\frac{\text{d}\theta}{\text{d}r}\), une expression qui relie la distance \(r\) à l'angle \(\theta\). Elle donne l'équation de l'orbite sous forme différentielle :
\begin{align*}\frac{\text{d}\theta}{\text{d}r}&=\frac{\frac{\text{d}\theta}{\text{d}t}}{\frac{\text{d}r}{\text{d}t}},\\\frac{\text{d}\theta}{\text{d}r}&=\frac{l}{\sqrt{2\mu}}\frac{\left(\frac{1}{r^2}\right)}{\left(E-\frac{l^2}{2\mu r^2}+\frac{Gm_1m_2}{r}\right)^{\frac{1}{2}}},\\\text{d}\theta&=\frac{l}{\sqrt{2\mu}}\frac{\left(\frac{1}{r^2}\right)}{\left(E-\frac{l^2}{2\mu r^2}+\frac{Gm_1m_2}{r}\right)^{\frac{1}{2}}}\text{d}r.\n-{align*}
Avant de procéder à l'intégration, nous devons faire quelques substitutions. Nous effectuons la substitution \(u=\frac{1}{r}\), \(\text{d}u=-\left(\frac{1}{r^2}\right)\text{d}r\\N,\N) :
$$\text{d}\theta=-\frac{l}{\sqrt{2\mu}}\frac{\text{d}u}{\left(E-\frac{l^2}{2\mu}u^2+Gm_1m_2u\right)^{\frac{1}{2}}}.$$
Ensuite, nous réarrangeons le facteur \(\frac{l}{\sqrt{2\mu}}\) dans le dénominateur du côté droit de l'équation. La réciproque du carré de ce facteur doit être prise, ce qui équivaut à \(\frac{{{2\mu}}{l^2}\). (La réciproque doit être prise car le facteur est déplacé sous un dénominateur et le facteur doit être élevé au carré car le dénominateur entier est à la puissance de \(\frac 1 2\)). Ce facteur est ensuite multiplié par chaque composant du dénominateur,
$$\begin{align*}\text{d}\theta&=-\frac{\text{d}u}{\left(\frac{2\mu E}{l^2}-u^2+2\left(\frac{\mu Gm_1m_2}{l^2}\right)u\right)^{\frac{1}{2}}},\\\text{d}\theta&=-\frac{\text{d}u}{\left(\frac{2\mu E}{l^2}-u^2+\frac{2u}{r_0}\right)^{\frac{1}{2}}},\end{align*}$$
où nous avons défini \(r_0=\frac{l^2}{\mu Gm_1m_2}\).
Maintenant, nous ajoutons et soustrayons \(\frac{1}{{r_0}^2}\) à l'intérieur de la parenthèse avec la racine carrée :
\begin{align*}\text{d}\theta&=-\frac{\text{d}u}{\left(\frac{2\mu E}{l^2}+\frac{1}{{r_0}^2}-u^2+\frac{2u}{r_0}-\frac{1}{{r_0}^2}\right)^{\frac{1}{2}}},\\\text{d}\theta&=-\frac{\text{d}u}{\left(\frac{2\mu E}{l^2}+\frac{1}{{r_0}^2}-\left(u-\frac{1}{r_0}\right)^2\right)^{\frac{1}{2}}},\\\text{d}\theta&=-\frac{r_0\text{d}u}{\left(\frac{2\mu E{r_0}^2}{l^2}+1-\left(r_0 u-1\right)^{2}\right)^{\frac{1}{2}}},\end{align*}
où nous définissons l'excentricité comme \(e=\sqrt{\frac{2\mu E{r_0}^2}{l^2}+1}\). Cette quantité sans dimension est responsable de la forme de l'orbite. Nous en parlerons plus en détail dans l'article Trajectoires orbitales.
Nous réécrivons notre équation en termes d'excentricité :
$$\text{d}\theta=-\frac{r_0\text{d}u}{\left({e}^2-\left(r_0 u-1\right)^{2}\right)^{\frac{1}{2}}}.$$
Enfin, nous effectuons la dernière substitution avant de résoudre l'intégrale, \(r_0u-1=e\cos{\alpha}\) et \(r_0 \text{d}u=-e\sin{\alpha}\text{d}\alpha\) :
\begin{align*}\text{d}\theta&=-\frac{-e\sin{\alpha}\text{d}\alpha}{\left({e}^2-{e}^2{\cos^2{\alpha}}\right)^{\frac{1}{2}}},\\\text{d}\theta&=-\frac{-\bcancel{e}\sin{\alpha}\text{d}\alpha}{\bcancel{e}\left(1-\cos^2{\alpha}\right)^{\frac{1}{2}}},\\\text{d}\theta&=\frac{\sin{\alpha}\text{d}\alpha}{\left(sin^2{\alpha}\right)^{\frac{1}{2}}},\\\text{d}\theta&=\frac{\bcancel{\sin{\alpha}}\text{d}\alpha}{\bcancel{sin{\alpha}}},\\\theta&=\int{\text{d}\alpha},\\\theta&=\alpha + \text{constant}.\Nend{align*}
Nous savons déjà que \(r=\frac{1}{u}\). Si nous choisissons la constante comme étant nulle, nous trouvons que :
\begin{align*}r_0u-1&=e\cos{\alpha},\\r_0u-1&=e\cos{\theta},\\u&=\frac{1-e\cos{\theta}}{r_0}.\end{align*}
Notre expression finale pour l'équation de l'orbite est :
\begin{align*}r&=\frac{1}{u},\\r&=\frac{r_0}{1+e\cos{\theta}}.\end{align*}
Alternativement, si nous choisissons la constante comme étant \(\pi\), nous obtenons la même équation d'orbite mais avec l'axe vertical réfléchi,
\begin{align*}r&=\frac{r_0}{1-e\cos{\theta}},\\r&=\frac{l^2}{{\mu}Gm_1m_2}\frac1{1-e\cos\left(\theta\right)}.\end{align*}