Pour finir, examinons un exemple de question.
Nous avons un fil de longueur \N(1,5\N,\Nmathrm{m}\N), transportant un courant de \N(2,7\N,\Nmathrm{mA}\N) dans la direction ascendante.
- Quelle est l'ampleur du champ magnétique généré par le fil à une distance radiale de \(6.7\,\mathrm{cm}\) ?
Nous avons maintenant un autre fil de longueur \N(1,2\N,\Nmathrm{m}\N), transportant un courant de \N(9,7\N,\Nmathrm{mA}\N) dans la direction du bas. Il est placé à une distance radiale de \N(6,7\N,\Nmathrm{cm}\N) du premier fil.
- Quelle est la direction de la force de Lorentz agissant sur le deuxième fil ?
- Quelle est l'ampleur de cette force ?
Le schéma ci-dessous montre la configuration de la question.
Fig. 5 - Deux fils parcourus par des courants de sens opposés.
1. Pour calculer l'ampleur du champ magnétique, utilisons notre équation du champ magnétique provenant d'un courant circulant dans un fil. En substituant les nombres de la question, nous obtenons
\N[ B = \Nfrac{4\pi \Nfois 10^{-7} \,\mathrm{\frac{H}{m}} \N- fois 2.7 \N- fois 10^{-3}\N-{2\pi \N- fois 6.7 \N- fois 10^{-2} \N-{mathrm{m}} = 8.1 \N- fois 10^{-9}\N-{mathrm{T} ,\]
où nous avons utilisé le fait que \( 1 \N, \Nmathrm{H} = 1 \N, \Nmathrm{\Nfrac{ kg \N, m^2}{s^2 \N, A^2}}) et \N( 1 \N, \Nmathrm{T} = 1 \N, \Nmathrm{\Nfrac{kg}{s^2 \N, A}}).
2. Pour trouver la direction de la force de Lorentz sur le deuxième fil, nous pouvons utiliser à la fois la règle de la poignée droite et la règle de la poignée gauche. Tout d'abord, nous devons déterminer la direction du champ magnétique provenant du premier fil. En pointant notre pouce droit dans la direction du courant, nous constatons que le champ se déplace dans le sens des aiguilles d'une montre.
Par la suite, en considérant l'orientation des deux fils, on peut alors déduire que la direction du champ magnétique agit vers le bas sur le fil 2. Par conséquent, en pointant notre premier doigt vers le bas et notre deuxième doigt dans le sens du courant, on constate que la force de Lorentz résultante se trouve à droite.
Si nous déterminions la direction de la force de Lorentz sur le fil 1, nous constaterions que la force résultante serait vers la gauche. Par conséquent, lorsque deux fils parallèles l'un à l'autre sont parcourus par des courants de directions opposées, ils subissent une force de répulsion.
3. Enfin, nous devons calculer l'ampleur de la force qui agit sur le deuxième fil. À l'aide de l'équation précédente, nous pouvons substituer nos nombres pour trouver
\[ \begin{align} F &= 8.1 \N- fois 10^{-9} \, \mathrm{T} \N- fois 9.7 \Nfois 10^{-3} \, \mathrm{A} \times 1.2 \, \mathrm{m} \N- Temps \Nsin \Ngauche(\Nfrac{\pi}{2} \Ndroite) \N &= 9.4 \Nfois 10^{-11} \N-, \Nmathrm{N}, \Nend{align}\N]
où nous avons utilisé le fait que \( 1 \Nmathrm{N} = 1 \Nmathrm{\Nfrac{kg \Nm, m}{s^2}}\) et \Nmathrm{N} = \Nfrac{\Npi}{2} \Nmathrm{rads}\N parce que la direction du champ magnétique et celle du fil sont perpendiculaires.