Frottement cinétique

T'es-tu déjà demandé pourquoi les routes deviennent glissantes lorsqu'il pleut, ce qui rend plus difficile l'arrêt d'une voiture ? Il s'avère que c'est une conséquence directe de la force de frottement cinétique, car l'asphalte sec crée une meilleure adhérence entre le pneu et la route que l'asphalte mouillé, ce qui réduit donc le temps d'arrêt du véhicule.

C'est parti

Des millions de fiches spécialement conçues pour étudier facilement

Inscris-toi gratuitement
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une voiture se déplace à une vitesse uniforme avec une force normale de \(1000 \, \mathrm{N}\). Si le frottement cinétique appliqué à cette voiture est de \(200 \N, \Nmathrm{N}\N). Calcule le coefficient du frottement cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'expression mathématique pour calculer la force de frottement cinétique ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de frottement agit dans le sens du mouvement de l'objet.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'unité du coefficient de frottement cinétique est le newton \(\mathrm{N}\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la différence entre le frottement statique et le frottement cinétique ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de frottement cinétique est proportionnelle à la force normale.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Le coefficient de frottement statique dépend du degré de glissance de la surface.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force constante de \ (12 \N, \NMathrm{N}\Nest appliquée à une \N (4,0 \N,\Nmathrm{kg}\Ncaisse sur une surface rugueuse qui est assise sur elle. La caisse subit une force de frottement contre la force qui la déplace sur la surface. En supposant que le coefficient de frottement est de \(\mu_{\mathrm{k}}=0,22\), trouve l'ampleur de la force de frottement qui s'oppose au mouvement.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force constante de \(28 \N, \Nmathrm{N}\Nest appliquée à une caisse \N (5,0 \N,\Nmathrm{kg}\N) sur une surface rugueuse qui est assise sur elle. La caisse subit une force de frottement contre la force qui la déplace sur la surface. En supposant que le coefficient de frottement est de \(\mu_\mathrm{k}=0,50\), trouve l'ampleur de la force de frottement qui s'oppose au mouvement.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une boîte lourde et immobile est poussée sur une surface rugueuse. Il faut un certain temps après l'application de la force initiale pour que le mouvement commence. Quelle forme de frottement s'applique dans cette situation ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de frottement sur le béton mouillé sera plus petite que sur le béton sec, ce qui diminue le temps d'arrêt d'un véhicule.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une voiture se déplace à une vitesse uniforme avec une force normale de \(1000 \, \mathrm{N}\). Si le frottement cinétique appliqué à cette voiture est de \(200 \N, \Nmathrm{N}\N). Calcule le coefficient du frottement cinétique.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est l'expression mathématique pour calculer la force de frottement cinétique ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de frottement agit dans le sens du mouvement de l'objet.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

L'unité du coefficient de frottement cinétique est le newton \(\mathrm{N}\).

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Quelle est la différence entre le frottement statique et le frottement cinétique ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de frottement cinétique est proportionnelle à la force normale.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Le coefficient de frottement statique dépend du degré de glissance de la surface.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force constante de \ (12 \N, \NMathrm{N}\Nest appliquée à une \N (4,0 \N,\Nmathrm{kg}\Ncaisse sur une surface rugueuse qui est assise sur elle. La caisse subit une force de frottement contre la force qui la déplace sur la surface. En supposant que le coefficient de frottement est de \(\mu_{\mathrm{k}}=0,22\), trouve l'ampleur de la force de frottement qui s'oppose au mouvement.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une force constante de \(28 \N, \Nmathrm{N}\Nest appliquée à une caisse \N (5,0 \N,\Nmathrm{kg}\N) sur une surface rugueuse qui est assise sur elle. La caisse subit une force de frottement contre la force qui la déplace sur la surface. En supposant que le coefficient de frottement est de \(\mu_\mathrm{k}=0,50\), trouve l'ampleur de la force de frottement qui s'oppose au mouvement.

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Une boîte lourde et immobile est poussée sur une surface rugueuse. Il faut un certain temps après l'application de la force initiale pour que le mouvement commence. Quelle forme de frottement s'applique dans cette situation ?

Afficer la réponse
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

La force de frottement sur le béton mouillé sera plus petite que sur le béton sec, ce qui diminue le temps d'arrêt d'un véhicule.

Afficer la réponse

Achieve better grades quicker with Premium

PREMIUM
Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen Karteikarten Spaced Repetition Lernsets AI-Tools Probeklausuren Lernplan Erklärungen
Kostenlos testen

Geld-zurück-Garantie, wenn du durch die Prüfung fällst

Review generated flashcards

Inscris-toi gratuitement
Tu as atteint la limite quotidienne de l'IA

Commence à apprendre ou crée tes propres flashcards d'IA

Équipe éditoriale StudySmarter

Équipe enseignants Frottement cinétique

  • Temps de lecture: 13 minutes
  • Vérifié par l'équipe éditoriale StudySmarter
Sauvegarder l'explication Sauvegarder l'explication
Tables des matières
Tables des matières

Sauter à un chapitre clé

    La friction cinétique est une force de frottement presque inévitable dans notre vie quotidienne. C'est parfois une halte, mais parfois aussi une nécessité. Elle est présente lorsque nous jouons au football, utilisons des smartphones, marchons, écrivons et effectuons de nombreuses autres activités courantes. Dans les scénarios de la vie réelle, chaque fois que nous envisageons un mouvement, la friction cinétique l'accompagnera toujours. Dans cet article, nous allons développer une meilleure compréhension de ce qu'est la friction cinétique et appliquer ces connaissances à divers exemples de problèmes.

    Définition de la friction cinétique

    Lorsque tu essaies de pousser une boîte, tu dois appliquer une certaine force. Une fois que la boîte commence à bouger, il est plus facile de maintenir le mouvement. Par expérience, plus la boîte est légère, plus il est facile de la déplacer.

    Imaginons un corps reposant sur une surface plane. Si une seule force de contact \ (\vec{F}\) est appliquée au corps horizontalement, nous pouvons identifier quatre composantes de force perpendiculaires et parallèles à la surface, comme le montre l'image ci-dessous.

    Relation de frottement cinétique Image d'une boîte et des forces qui agissent sur elle StudySmarterFig. 1 - Si un objet est placé sur une surface horizontale et qu'une force horizontale est appliquée, la force de frottement cinétique se produira dans la direction opposée au mouvement et sera proportionnelle à la force normale.

    La force normale, \(\vec{F_\mathrm{N}}\), est perpendiculaire à la surface, et la force de frottement, \ (\vec{F_\mathrm{f}}\),

    est parallèle à la surface. La force de frottement est dans la direction opposée au mouvement.

    Lefrottement cinétique est un type de force de frottement qui agit sur les objets en mouvement.

    Il est désigné par \ (\vec{F_{\mathrm{f, k}}\) et sa magnitude est proportionnelle à la magnitude de la force normale.

    Cette relation de proportionnalité est assez intuitive, comme nous le savons par expérience : plus l'objet est lourd, plus il est difficile de le faire bouger. Au niveau microscopique, une masse plus importante équivaut à une attraction gravitationnelle plus forte ; par conséquent, l'objet sera plus proche de la surface, ce qui augmentera la friction entre les deux.

    Formule de la friction cinétique

    L'ampleur de la force de frottement cinétique dépend du coefficient sans dimension du frottement cinétique \(\mu_{\mathrm{k}}\) et de la force normale \(\vec{F_\mathrm{N}}\) mesurée en newtons (\(\mathrm{N}\)). Cette relation peut être représentée mathématiquement

    $$ \vec{F}_{\mathrm{f,k}}=\mu_{\mathrm{k}} \vec{F_\mathrm{N}}.$$

    Coefficient de frottement cinétique

    Le rapport entre la force de frottement cinétique des surfaces en contact et la force normale est appelé coefficient de frottement cinétique. Il est désigné par \(\mu_{\mathrm{k}}\). Son ampleur dépend du degré de glissance de la surface. Comme il s'agit du rapport de deux forces, le coefficient de frottement cinétique n'a pas d'unité. Dans le tableau ci-dessous, nous pouvons voir les coefficients approximatifs de frottement cinétique pour certaines combinaisons courantes de matériaux.

    MatériauxCoefficient de frottement cinétique, \(\mu_{\mathrm{k}}\)
    Acier sur acier \(0.57\)
    Aluminium sur acier\(0.47\)
    Cuivre sur acier\(0.36\)
    Verre sur verre\(0.40\)
    Cuivre sur verre\(0.53\)
    Téflon sur Téflon\(0.04\)
    Téflon sur acier\(0.04\)
    Caoutchouc sur béton (sec)\(0.80\)
    Caoutchouc sur béton (humide)\(0.25\)

    Maintenant que nous connaissons l'équation permettant de calculer la force de frottement cinétique et que nous nous sommes familiarisés avec le coefficient de frottement cinétique, appliquons ces connaissances à quelques exemples de problèmes !

    Exemples de frottement cinétique

    Pour commencer, examinons un cas simple d'application directe de l'équation du frottement cinétique !

    Une voiture se déplace à une vitesse uniforme avec une force normale de \(2000 \, \mathrm{N}\). Si le frottement cinétique appliqué à cette voiture est de \ (400 \, \mathrm{N}\). Calcule alors le coefficient de frottement cinétique impliqué ici ?

    Solution

    Dans l'exemple, les amplitudes de la force normale et de la force de frottement cinétique sont données. Ainsi, \(\vec{F}_{\mathrm{f,k}}=400 \, \mathrm{N}\) et \(F_\mathrm{N}= 2000 \, \mathrm{N}\). Si nous introduisons ces valeurs dans la formule du frottement cinétique

    $$ \vec{F}_{\mathrm{f,k}}=\mu_{\mathrm{k}} \vec{F_\mathrm{N}},$$

    nous obtenons l'expression suivante

    $$400 \, \mathrm{N} =\mu_{\mathrm{k}} \cdot 2000 \, \mathrm{N}, $$

    ce qui peut être réarrangé pour trouver le coefficient de frottement

    $$ \begin{align} \mu_{\mathrm{k}} &= \frac{400\,\cancel{N}}{2000 \cancel{N}} \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- \N- &=0,2.\N- end{align} $$

    Voyons maintenant un exemple un peu plus compliqué impliquant diverses forces agissant sur une boîte.

    Une boîte \N(200,0\N, \Nmathrm{N}\N) doit être poussée sur une surface horizontale. Imagine que tu traînes la corde vers le haut et \N(30 ^{\circ}\r) au-dessus de l'horizontale pour déplacer la boîte. Quelle est la force nécessaire pour maintenir une vitesse constante ? Assume \(\mu_{\mathrm{k}}=0.5000\).

    Relation de frottement cinétique Image d'une boîte et des forces qui agissent sur elle StudySmarterFig. 2 - Toutes les forces agissant sur la boîte - la force normale, le poids et une force à \(30 ^{\circ}\) de la surface horizontale. La force de frottement cinétique est dans la direction opposée à la force.

    Solution

    Dans l'exemple, il est dit que nous voulons maintenir une vitesse constante. Une vitesse constante signifie que l'objet est en état d'équilibre (c'est-à-dire que les forces s'équilibrent). Traçons un diagramme de corps libre pour mieux comprendre les forces et examinons les composantes horizontales et verticales.

    Relation de frottement cinétique Dessin d'un diagramme de corps libre d'une boîte StudySmarterFig. 3 - Diagramme de corps libre de la boîte. Les forces s'exercent à la fois dans le sens horizontal et dans le sens vertical.

    Lorsque nous examinons les composantes perpendiculaires de la force, les forces ascendantes devraient être égales aux forces descendantes en termes de magnitude.

    La force normale n'est pas toujours égale au poids !

    Maintenant, nous pouvons écrire deux équations distinctes. Nous utiliserons le fait que la somme des forces dans les directions \(x\) et \(y\) est égale à zéro. Les forces horizontales sont donc

    $$ \sum F_\mathrm{x} = 0,$$

    ce qui, d'après le diagramme du corps libre, peut être exprimé comme suit

    $$ T \cdot \cos 30 ^{\circ} = F_{\mathrm{f,k}}=\mu_{\mathrm{k}} F_\mathrm{N}.$$

    Les forces verticales sont également

    $$ \sum F_\mathrm{y} = 0,$$

    et nous donnent l'équation suivante

    $$ F_\mathrm{N} + T \cdot \sin 30 ^{\circ} = w.$$

    Donc \(F_\mathrm{N} = w - T \cdot \sin 30 ^{\circ}\). Nous pouvons insérer la valeur de \(F_\mathrm{N}\) dans l'équation des composantes horizontales

    $$ \begin{align} T \cdot \cos 30 ^{\circ} &= \mu_\mathrm{k} (w - T \cdot \sin 30 ^{\circ} ) \cdot \cos 30 ^{\circ} &= \mu_\mathrm{k} w - \mu_\mathrm{k} \cdot \sin 30 ^{\circ} ), \end{align} $$

    et rassemble et simplifie tous les termes similaires du côté gauche

    $$ \begin{align}T ( \cos 30 ^{\circ} + \mu_\mathrm{k} \cdot \sin 30 ^{\circ} ) &= \mu_\mathrm{k} w \ T(\cos 30 ^{\circ} + \mu_\mathrm{k} \cdot \sin 30 ^{\circ}) &= \mu_\mathrm{k} w. \Nend{align} $$

    Nous pouvons maintenant introduire toutes les valeurs correspondantes et calculer la force \(T\) :

    $$ \begin{align} T &= \frac{\mu_\mathrm{k} w}{\cos 30 ^{\circ} + \mu_\mathrm{k} \cdot \sin 30 ^{\circ}} \N- T &= \Nfrac{0.5000 \Ncdot 200.0 \N, \Nmathrm{N}}{0.87 + 0.5000 \Ncdot 0.5} \N- T &= 89,29 \N, \Nmathrm{N}. \Nend{align}$$

    Enfin, examinons un exemple similaire, mais cette fois-ci, la boîte est placée sur un plan incliné.

    Une boîte glisse à une vitesse constante depuis un plan incliné qui fait un angle \(\alpha\) avec l'horizontale. La surface a un coefficient de frottement cinétique de \(\mu_{\mathrm{k}}\). Si le poids de la boîte est \(w\), trouve l'angle \ (\alpha\).

    Relation de frottement cinétique Image d'une boîte glissant d'un plan incliné à une vitesse constante StudySmarterFig. 4 - Une boîte glisse sur un plan incliné. Elle se déplace à une vitesse constante.

    Examinons les forces qui agissent sur la boîte dans la figure ci-dessous.

    Relation de frottement cinétique Dessin d'un diagramme de corps libre des forces agissant sur une boîte qui glisse d'un plan incliné StudySmarterFig. 5 - Toutes les forces agissant sur une boîte glissant sur un plan incliné. Nous pouvons appliquer un nouveau système de coordonnées pour écrire les équations correspondantes.

    Si nous obtenons de nouvelles coordonnées (\(x\) et \(y\)), nous voyons que dans la direction \(x\), il y a une force de frottement cinétique et une composante horizontale du poids. Dans la direction \(y\), il y a la force normale et la composante verticale du poids. Comme la boîte se déplace à une vitesse constante, elle est en équilibre.

    1. Pour la direction \(x) : \(w\cdot\sin\alpha=F_\mathrm{f,k} = \mu_{\mathrm{k}}F_\mathrm{N}\)
    2. Pour la direction \(y\)- : \(F_\mathrm{N}=w\cdot\cos\alpha\)

    Nous pouvons insérer la deuxième équation dans la première :

    $$ \begin{align} w \cdot \sin\alpha & =\mu_\mathrm{k}w \cdot \cos\alpha \cancel{w}\cdot\sin\alpha & =\mu_\mathrm{k} \cancel{w} \cdot \cos\alpha \\mu_\mathrm{k} & = \tan\alpha \end{align}$$.

    L'angle \(\alpha\) est alors égal à

    $$ \alpha = \arctan\mu_\mathrm{k}.$$

    Frottement statique et frottement cinétique

    Au total, le coefficient de frottement peut prendre deux formes, le frottement cinétique étant l'une d'entre elles. L'autre type est connu sous le nom de frottement statique. Comme nous l'avons déjà établi, la force de frottement cinétique est un type de force de frottement qui agit sur les objets en mouvement. Alors, quelle est la différence entre le frottement statique et le frottement cinétique ?

    Le frottementstatique est une force qui fait en sorte que les objets au repos les uns par rapport aux autres restent immobiles.

    En d'autres termes, le frottement cinétique s'applique aux objets en mouvement, tandis que le frottement statique concerne les objets immobiles.

    La différence entre les deux types peut être retenue directement à partir du vocabulaire. Alors que statique signifie absence de mouvement, cinétique signifie relatif ou résultant d'un mouvement !

    Mathématiquement, le frottement statique \(F_\mathrm{f,s}\) ressemble beaucoup au frottement cinétique,

    $$ F_\mathrm{f,s} = \mu_\mathrm{s}F_\mathrm{N}$$$

    où la seule différence est l'utilisation d'un coefficient différent \(\mu_\mathrm{s}\), qui est le coefficient de frottement statique.

    Prenons un exemple où un objet subit les deux types de frottement.

    Une boîte lourde repose sur une table et reste immobile jusqu'à ce qu'une force soit appliquée horizontalement pour la faire glisser sur la table. Comme la surface de la table est assez bosselée, la boîte ne bouge pas au début, malgré la force appliquée. Par conséquent, la boîte est poussée encore plus fort jusqu'à ce qu'elle commence à se déplacer sur la table. Explique les différentes étapes des forces subies par la boîte et représente la friction en fonction de la force appliquée.

    Solution

    • Au début, aucune force n'est appliquée à la boîte, qui ne subit donc que l'attraction gravitationnelle vers le bas et la force normale de la table qui la pousse vers le haut.
    • Ensuite, une force de poussée \ (F_\mathrm{p}\) est appliquée horizontalement à la boîte. Il en résulte une résistance dans la direction opposée, connue sous le nom de frottement \(F_\mathrm{f}\).
    • Si l'on considère que la boîte est lourde et que la surface de la table est bosselée, la boîte ne glissera pas facilement, car ces deux caractéristiques affecteront le frottement.

    La force normale et le caractère rugueux ou lisse des surfaces concernées sont les principaux facteurs qui influent sur le frottement.

    • Ainsi, selon l'ampleur de la force appliquée, la boîte restera immobile en raison du frottement statique \(F_\mathrm{f,s}\).
    • Lorsque la force appliquée augmente, \ (F_\mathrm{p}\) et \ (F_\mathrm{f,s}\) finissent par avoir la même ampleur. Ce point est connu sous le nom de seuil de mouvement , et une fois atteint, la boîte commencera à bouger.
    • Une fois que la boîte commence à se déplacer, la force de frottement qui affecte le mouvement sera le frottement cinétique \(F_\mathrm{f,k}\). Ildeviendra plus facile de maintenir son mouvement, car le coefficient de frottement des objets en mouvement est généralement inférieur à celui des objets immobiles.

    Graphiquement, toutes ces observations peuvent être vues dans la figure ci-dessous.

    Relation de frottement cinétique La force de frottement est représentée en fonction de la force appliquée. Le graphique peut être séparé en deux sections, la friction statique et la friction cinétique, avec une valeur maximale au seuil du mouvement StudySmarter Fig. 6 - Représentation graphique du frottement en fonction de la force appliquée.

    Friction cinétique - Points clés à retenir

    • La force de frottement cinétique est un type de force de frottement agissant sur les objets en mouvement.
    • L'ampleur de la force de frottement cinétique dépend du coefficient de frottement cinétique et de la force normale.
    • Lerapport entre la force de frottement cinétique des surfaces en contact et la force normale est connu sous le nom de le coefficient de frottement cinétique.
    • L'équation utilisée pour calculer le coefficient de frottement est \(\mu_{\mathrm{k}} = \frac{\vec{F}_{\mathrm{f,k}}{\vec{F}_\mathrm{N}}\).
    • Le coefficient de frottement cinétique dépend du degré de glissance de la surface.
    • La force normale n'est pas toujours égale au poids.
    • Le frottement statique est un type de frottement appliqué à des objets stationnaires.
    Questions fréquemment posées en Frottement cinétique
    Qu'est-ce que le frottement cinétique ?
    Le frottement cinétique est la force qui s'oppose au mouvement entre deux surfaces en contact qui glissent l'une sur l'autre.
    Comment le frottement cinétique diffère-t-il du frottement statique ?
    Le frottement cinétique agit lorsque les surfaces sont en mouvement, tandis que le frottement statique agit lorsque les surfaces sont immobiles.
    Quels facteurs influencent le frottement cinétique ?
    Le frottement cinétique dépend de la nature des surfaces en contact et de la force normale qui les presse l'une contre l'autre.
    Comment réduire le frottement cinétique ?
    Pour réduire le frottement cinétique, on peut lisser les surfaces, appliquer des lubrifiants ou utiliser des roulements à billes.
    Sauvegarder l'explication

    Teste tes connaissances avec des questions à choix multiples

    Une voiture se déplace à une vitesse uniforme avec une force normale de \(1000 \, \mathrm{N}\). Si le frottement cinétique appliqué à cette voiture est de \(200 \N, \Nmathrm{N}\N). Calcule le coefficient du frottement cinétique.

    Quelle est l'expression mathématique pour calculer la force de frottement cinétique ?

    La force de frottement agit dans le sens du mouvement de l'objet.

    Suivant

    Découvre des matériels d'apprentissage avec l'application gratuite StudySmarter

    Lance-toi dans tes études
    1
    À propos de StudySmarter

    StudySmarter est une entreprise de technologie éducative mondialement reconnue, offrant une plateforme d'apprentissage holistique conçue pour les étudiants de tous âges et de tous niveaux éducatifs. Notre plateforme fournit un soutien à l'apprentissage pour une large gamme de sujets, y compris les STEM, les sciences sociales et les langues, et aide également les étudiants à réussir divers tests et examens dans le monde entier, tels que le GCSE, le A Level, le SAT, l'ACT, l'Abitur, et plus encore. Nous proposons une bibliothèque étendue de matériels d'apprentissage, y compris des flashcards interactives, des solutions de manuels scolaires complètes et des explications détaillées. La technologie de pointe et les outils que nous fournissons aident les étudiants à créer leurs propres matériels d'apprentissage. Le contenu de StudySmarter est non seulement vérifié par des experts, mais également régulièrement mis à jour pour garantir l'exactitude et la pertinence.

    En savoir plus
    Équipe éditoriale StudySmarter

    Équipe enseignants Physique-chimie

    • Temps de lecture: 13 minutes
    • Vérifié par l'équipe éditoriale StudySmarter
    Sauvegarder l'explication Sauvegarder l'explication

    Sauvegarder l'explication

    Inscris-toi gratuitement

    Inscris-toi gratuitement et commence à réviser !

    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !

    La première appli d'apprentissage qui a réunit vraiment tout ce dont tu as besoin pour réussir tes examens.

    • Fiches & Quiz
    • Assistant virtuel basé sur l’IA
    • Planificateur d'étude
    • Examens blancs
    • Prise de notes intelligente
    Rejoins plus de 22 millions d'étudiants qui apprennent avec notre appli StudySmarter !